Clément Léna

Learn More
Release of the neurotransmitter dopamine in the mesolimbic system of the brain mediates the reinforcing properties of several drugs of abuse, including nicotine. Here we investigate the contribution of the high-affinity neuronal nicotinic acetylcholine receptor to the effects of nicotine on the mesolimbic dopamine system in mice lacking the beta2 subunit of(More)
Nicotinic acetylcholine receptors (nAChRs) expressed by dopaminergic (DA) neurons have long been considered as potential therapeutic targets for the treatment of several neuropsychiatric diseases, including nicotine and cocaine addiction or Parkinson's disease. However, DA neurons express mRNAs coding for most, if not all, neuronal nAChR subunits, and the(More)
Nicotine affects many aspects of behaviour including learning and memory through its interaction with neuronal nicotinic acetylcholine receptors (nAChR). Functional nAChRs are pentameric proteins containing at least one type of alpha-subunit and one type of beta-subunit. The involvement of a particular neuronal nicotinic subunit in pharmacology and(More)
Although the expression patterns of the neuronal nicotinic acetylcholine receptor (nAChR) subunits thus far described are known, the subunit composition of functional receptors in different brain areas is an ongoing question. Mice lacking the beta2 subunit of the nAChR were used for receptor autoradiography studies and patch-clamp recording in thin brain(More)
Nicotine exerts antinociceptive effects by interacting with one or more of the subtypes of nicotinic acetylcholine receptors (nAChRs) that are present throughout the neuronal pathways that respond to pain. To identify the particular subunits involved in this process, we generated mice lacking the alpha4 subunit of the neuronal nAChR by homologous(More)
Tonic motor control involves oscillatory synchronization of activity at low frequency (5-30 Hz) throughout the sensorimotor system, including cerebellar areas. We investigated the mechanisms underpinning cerebellar oscillations. We found that Golgi interneurons, which gate information transfer in the cerebellar cortex input layer, are extensively coupled(More)
Dysfunction of the serotonin system is implicated in sleep and emotional disorders. To test whether these impairments could arise during development, we studied the impact of early-life, transient versus genetic, permanent alterations of serotonin reuptake on sleep-wakefulness patterns, depression-related behavior, and associated physiological features.(More)
Brain activity in sleep plays a crucial role in memory consolidation, an offline process that determines the long-term strength of memory traces. Consolidation efficacy differs across individuals, but the brain activity dynamics underlying these differences remain unknown. Here, we studied how interindividual variability in fear memory consolidation relates(More)
Nicotinic acetylcholine receptor (nAChR) responses of rat medial habenular neurons are potentiated up to 3.5-fold by increasing the concentration of external Ca2+ in the millimolar range. This effect, independent of voltage, is probably due to the binding of Ca2+ to an external site. External Ca2+ decreases nAChR single-channel conductance at negative but(More)
Presynaptic nicotinic ACh receptors (nAChRs) are abundant in the nervous system, where they are thought to regulate the release of various neurotransmitters. Whole-cell recordings performed on rat interpeduncular nucleus neurons using the thin-slice technique showed that nicotine dramatically increased the frequency of postsynaptic GABAergic currents. This(More)