Clément Didiot

We don’t have enough information about this author to calculate their statistics. If you think this is an error let us know.
Learn More
A new structural model for the Si(331)-(12x1) surface reconstruction is proposed. Based on scanning tunneling microscopy images of unprecedented resolution, low-energy electron diffraction data, and first-principles total-energy calculations, we demonstrate that the reconstructed Si(331) surface shares the same elementary building blocks as the(More)
Driven by the reduction of dangling bonds and the minimization of surface stress, reconstruction of silicon surfaces leads to a striking diversity of outcomes. Despite this variety even very elaborate structures are generally comprised of a small number of structural building blocks. We here identify important elementary building blocks and discuss their(More)
The transition-metal dichalcogenide 1T-TiSe2 is a quasi-two-dimensional layered material with a charge density wave (CDW) transition temperature of T(CDW) ≈ 200 K. Self-doping effects for crystals grown at different temperatures introduce structural defects, modify the temperature-dependent resistivity, and strongly perturbate the CDW phase. Here, we study(More)
We report an investigation on the properties of 0.33 ML of Sn on Ge(111) at temperatures down to 5 K. Low-energy electron diffraction and scanning tunneling microscopy show that the (3x3) phase formed at approximately 200 K, reverts to a new ((square root 3)x(square root 3))R30 degrees phase below 30 K. The vertical distortion characteristic of the (3x3)(More)
The self-organized growth of nanostructures on surfaces could offer many advantages in the development of new catalysts, electronic devices and magnetic data-storage media. The local density of electronic states on the surface at the relevant energy scale strongly influences chemical reactivity, as does the shape of the nanoparticles. The electronic(More)
High-resolution photoemission of the Sn 4d core level of Sn/Ge(111)-(3x3) resolves three main components in the line shape, which are assigned to each of the three Sn atoms that form the unit cell. The line shape found is in agreement with an initial state picture and supports that the two down atoms are inequivalent. In full agreement with these results,(More)
Using angle-resolved photoelectron spectroscopy we investigate the electronic valence band structure of the Si(331)-(12 × 1) surface reconstruction for which we recently proposed a structural model containing silicon pentamers as elementary structural building blocks. We find that this surface, reported to be metallic in a previous study, shows a clear band(More)
  • 1