Clément Charpentier

Learn More
The incidence coloring game has been introduced in [S. 1987] as a variation of the ordinary coloring game. The incidence game chromatic number ι g (G) of a graph G is the minimum number of colors for which Alice has a winning strategy when playing the incidence coloring game on G. we proved that ι g (G) ≤ ⌊ 3∆(G)−a 2 ⌋ + 8a − 1 for every graph G with(More)
We denote by χ g (G) the game chromatic number of a graph G, which is the smallest number of colors Alice needs to win the coloring game on G. We know from Montassier et al. a planar graph with girth at least 8 into a forest and a matching, Discrete Maths, 311:844-849, 2011] that planar graphs with girth at least 8 have game chromatic number at most 5. One(More)
  • 1