Clémence Ligneul

  • Citations Per Year
Learn More
PURPOSE To investigate how intracellular metabolites diffusion measured in vivo up to very high q/b in the mouse brain can be explained in terms of simple geometries. METHODS 10 mice were scanned using our new STE-LASER sequence, at 11.7 Tesla (T), up to qmax = 1 μm-1 at diffusion time td = 63.2 ms, corresponding to bmax = 60 ms/µm². We model cell fibers(More)
PURPOSE To assess the potential correlation between metabolites diffusion and relaxation in the mouse brain, which is of importance for interpreting and modeling metabolite diffusion based on pure geometry, irrespective of relaxation properties (multicompartmental relaxation or surface relaxivity). METHODS A new diffusion-weighted magnetic resonance(More)
The brain is one of the most complex organs, and tools are lacking to assess its cellular morphology in vivo. Here we combine original diffusion-weighted magnetic resonance (MR) spectroscopy acquisition and novel modeling strategies to explore the possibility of quantifying brain cell morphology noninvasively. First, the diffusion of cell-specific(More)
Prior models used to clarify which aspects of tissue microstructure mostly affect intracellular diffusion and corresponding diffusion-weighted magnetic resonance (DW-MR) signal have focused on relatively simple geometrical descriptions of the cellular microenvironment (spheres, randomly oriented cylinders, etc…), neglecting finer morphological details which(More)
Measuring diffusion at ultra-short time scales may yield information about short-range intracellular structure and cytosol viscosity. However, reaching such time scales usually requires oscillating gradients, which in turn imply long echo times TE . Here we propose a new kind of stretched oscillating gradient that allows us to increase diffusion-weighting b(More)
  • 1