Cinthia Núñez

Learn More
BACKGROUND The role of the RNA polymerase sigma factor RpoN in regulation of gene expression in Geobacter sulfurreducens was investigated to better understand transcriptional regulatory networks as part of an effort to develop regulatory modules for genome-scale in silico models, which can predict the physiological responses of Geobacter species during(More)
Several aspects of alginate and PHB synthesis in Azotobacter vinelandii at a molecular level have been elucidated in articles published during the last ten years. It is now clear that alginate and PHB synthesis are under a very complex genetic control. Genetic modification of A. vinelandii has produced a number of very interesting mutants which have(More)
The Escherichia coli LexA protein was used as a query sequence in TBLASTN searches to identify the lexA gene of the delta-proteobacterium Geobacter sulfurreducens from its genome sequence. The results of the search indicated that G. sulfurreducens has two independent lexA genes designated lexA1 and lexA2. A copy of a dinB gene homologue, which in E. coli(More)
Transcription of the Azotobacter vinelandii algD gene, which encodes GDP-mannose dehydrogenase (the rate-limiting enzyme of alginate synthesis), starts from three sites: p1, p2, and p3. The sensor kinase GacS, a member of the two-component regulatory system, is required for transcription of algD from its three sites during the stationary phase. Here we show(More)
Azotobacter vinelandii produces the exopolysaccharide alginate, which is essential for its differentiation to desiccation-resistant cysts. In different bacterial species, the alternative sigma factor sigma(E) regulates the expression of functions related to the extracytoplasmic compartments. In A. vinelandii and Pseudomonas aeruginosa, the sigma(E) factor(More)
Azotobacter vinelandii, a soil nitrogen fixing bacterium, produces alginate a polysaccharide with industrial and medical relevant applications. In this work, we characterized a miniTn5 mutant, named GG101, that showed a 14-fold increase in the specific production of alginate when grown diazotrophically on solid minimal medium comparing to the parental E(More)
Azotobacter vinelandii is a soil bacterium that produces the polysaccharide alginate. In this work, we identified a miniTn5 mutant, named GG9, which showed increased alginate production of higher molecular mass, and increased expression of the alginate biosynthetic genes algD and alg8 when compared to its parental strain. The miniTn5 was inserted within ORF(More)
In the marine environment, control of invasive species’ population levels, that is, keeping them at an abundance level which is below a density-dependent adverse effect, may be the most attainable goal for the management of introduced bryozoans. An improved understanding of reproductive strategies and life history traits is key in order to understand the(More)