Cindy P. A. A. van Roomen

Learn More
Adipose tissue is a critical mediator in obesity-induced insulin resistance. Previously we have demonstrated that pharmacological lowering of glycosphingolipids and subsequently GM3 by using the iminosugar AMP-DNM, strikingly improves glycemic control. Here we studied the effects of AMP-DNM on adipose tissue function and inflammation in detail to provide an(More)
The iminosugar N-(5'-adamantane-1'-yl-methoxy)-pentyl-1-deoxynoijirimycin (AMP-DNM), an inhibitor of glycosphingolipid (GSL) biosynthesis is known to ameliorate diabetes, insulin sensitivity and to prevent liver steatosis in ob/ob mice. Thus far the effect of GSL synthesis inhibition on pre-existing NASH has not yet been assessed. To investigate it,(More)
The enzyme glucocerebrosidase (GBA) hydrolyses glucosylceramide (GlcCer) in lysosomes. Markedly reduced GBA activity is associated with severe manifestations of Gaucher disease including neurological involvement. Mutations in the GBA gene have recently also been identified as major genetic risk factor for Parkinsonism. Disturbed metabolism of GlcCer may(More)
Deficiency of glucocerebrosidase (GBA) causes Gaucher disease (GD). In the common non-neuronopathic GD type I variant, glucosylceramide accumulates primarily in the lysosomes of visceral macrophages. Supplementing storage cells with lacking enzyme is accomplished via chronic intravenous administration of recombinant GBA containing mannose-terminated(More)
Impaired function of NPC1 or NPC2 lysosomal proteins leads to the intracellular accumulation of unesterified cholesterol, the primary defect underlying Niemann-Pick type C (NPC) disease. In addition, glycosphingolipids (GSLs) accumulate in lysosomes as well. Intralysosomal lipid accumulation triggers the activation of a set of genes, including potential(More)
Gaucher disease is characterized by lysosomal accumulation of glucosylceramide due to deficient activity of lysosomal glucocerebrosidase (GBA). In cells, glucosylceramide is also degraded outside lysosomes by the enzyme glucosylceramidase 2 (GBA2) of which inherited deficiency is associated with ataxias. The interest in GBA and glucosylceramide metabolism(More)
  • 1