Learn More
Our goal is to develop a vaccine that sustainably prevents Plasmodium falciparum (Pf) malaria in ≥80% of recipients. Pf sporozoites (PfSPZ) administered by mosquito bites are the only immunogens shown to induce such protection in humans. Such protection is thought to be mediated by CD8(+) T cells in the liver that secrete interferon-γ (IFN-γ). We report(More)
OBJECTIVE To describe the demographics, risk behaviors, and HIV-1 subtypes in a large cohort of recently HIV-infected military personnel. DESIGN Descriptive, cross-sectional study. METHODS US military personnel with recent HIV seroconversion from six medical referral centers were enrolled with a self-administered questionnaire, CD4 cell counts, syphilis(More)
BACKGROUND Immunization with genetically engineered, attenuated malaria parasites (GAP) that arrest during liver infection confers sterile protection in mouse malaria models. A first generation Plasmodium falciparum GAP (Pf p52(-)/p36(-) GAP) was previously generated by deletion of two pre-erythrocytic stage-expressed genes (P52 and P36) in the NF54 strain.(More)
BACKGROUND A protective malaria vaccine will likely need to elicit both cell-mediated and antibody responses. As adenovirus vaccine vectors induce both these responses in humans, a Phase 1/2a clinical trial was conducted to evaluate the efficacy of an adenovirus serotype 5-vectored malaria vaccine against sporozoite challenge. METHODOLOGY/PRINCIPAL(More)
BACKGROUND Fifteen volunteers were immunized with three doses of plasmid DNA encoding P. falciparum circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1) and boosted with human adenovirus-5 (Ad) expressing the same antigens (DNA/Ad). Four volunteers (27%) demonstrated sterile immunity to controlled human malaria infection and, overall,(More)
BACKGROUND Models of immunity to malaria indicate the importance of CD8+ T cell responses for targeting intrahepatic stages and antibodies for targeting sporozoite and blood stages. We designed a multistage adenovirus 5 (Ad5)-vectored Plasmodium falciparum malaria vaccine, aiming to induce both types of responses in humans, that was tested for safety and(More)
BACKGROUND In a prior study, a DNA prime / adenovirus boost vaccine (DNA/Ad) expressing P. falciparum circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1) (NMRC-M3V-D/Ad-PfCA Vaccine) induced 27% protection against controlled human malaria infection (CHMI). To investigate the contribution of DNA priming, we tested the efficacy of adenovirus(More)
BACKGROUND Gene-based vaccination using prime/boost regimens protects animals and humans against malaria, inducing cell-mediated responses that in animal models target liver stage malaria parasites. We tested a DNA prime/adenovirus boost malaria vaccine in a Phase 1 clinical trial with controlled human malaria infection. METHODOLOGY/PRINCIPAL FINDINGS The(More)
At a public hospital in Georgetown, Guyana, 44 patients seeking treatment for symptomatic, slide-confirmed malaria were given standard chloroquine (CQ) therapy and followed for 28 days. The patients apparently had pure infections with Plasmodium falciparum (14), P. vivax (13) or P. malariae (one), or mixed infections either of P. falciparum and P. vivax(More)
Candidate dengue DNA vaccine constructs for each dengue serotype were developed by incorporating pre-membrane and envelope genes into a plasmid vector. A Phase 1 clinical trial was performed using the dengue virus serotype-1 (DENV-1) vaccine construct (D1ME(100)). The study was an open-label, dose-escalation, safety and immunogenicity trial involving 22(More)