Learn More
Introducing mesenchymal stem cell (MSC)-seeded collagen constructs into load-protected wound sites in the rabbit patellar and Achilles tendons significantly improves their repair outcome compared to natural healing of the unfilled defect. However, these constructs would not be acceptable alternatives for repairing complete tendon ruptures because they lack(More)
BACKGROUND Oropharyngeal dysphagia is prevalent in individuals with amyotrophic lateral sclerosis (ALS) leading to malnutrition, aspiration pneumonia, and death. These factors necessitate early detection of at-risk patients to prolong maintenance of safe oral intake and pulmonary function. This study aimed to evaluate the discriminant ability of the Eating(More)
We report here on the generation of a new fluorescent protein reporter transgenic mouse line, Col10a1-mCherry, which can be used as a tool to study chondrocyte biology and pathology. Collagen, Type X, alpha 1 (Col10a1) is highly expressed in hypertrophic chondrocytes and commonly used as a gene marker for this cell population. The Col10a1-mCherry reporter(More)
Activities of daily living (ADLs) generate complex, multidirectional forces in the anterior cruciate ligament (ACL). While calibration problems preclude direct measurement in patients, ACL forces can conceivably be measured in animals after technical challenges are overcome. For example, motion and force sensors can be implanted in the animal but(More)
The objective of the present study was to test the hypotheses that implantation of cell-seeded constructs in a rabbit Achilles tendon defect model would 1) improve repair biomechanics and matrix organization and 2) result in higher failure forces than measured in vivo forces in normal rabbit Achilles tendon (AT) during an inclined hopping activity.(More)
  • 1