Learn More
A simple and ultrasensitive label-free electrochemical impedimetric aptasensor for thrombin based on the cascaded signal amplification was reported. The sandwich system of aptamer/thrombin/aptamer-functionalized Au nanoparticles (Apt-AuNPs) was fabricated as the sensing platform. The change of the interfacial feature of the electrode was characterized by(More)
The rapid development in nanoparticle production and application during the past decade requires an easy, rapid, and predictive screening method for nanoparticles toxicity assay. In this study, the toxicological effects and the source of toxicity of copper nanoparticles (CuNPs) are investigated based on a stress-responsive bacterial biosensor array.(More)
Study on antioxidants' radical scavenging processes and antioxidant capabilities is important for understanding the protective role of antioxidants against oxidative damages associated with some chronic diseases and food degradation. Traditional methods to monitor the radical scavenging by antioxidant require expensive instrument and sophisticated synthesis(More)
Rapid and sensitive assay of thrombin and its inhibition in a high-throughput manner is of great significance in the diagnostic and pharmaceutical fields. In this article, we developed a novel biosensor for the detection of thrombin and its inhibition based on the aggregation behavior of the unmodified CdTe QDs. A cationic substrate peptide of thrombin(More)
Supercharged proteins are a new class of functional proteins with exceptional stability and potent ability to deliver bio-macromolecules into cells. As a proof-of-principle, a novel application of supercharged proteins as a versatile biosensing platform for nucleic acid detection and epigenetics analysis is presented. Taking supercharged green fluorescent(More)
Protein phosphorylation catalyzed by protein kinases plays a critical role in many intracellular processes, and detecting kinase activity is important in biochemical research and drug discovery. Herein, we developed a novel fluorescent biosensor to detect protein kinase activity based on phosphorylation-mediated assembly of semisynthetic green fluorescent(More)
Nowadays, large-scale screening for enzyme discovery, engineering, and drug discovery processes require simple, fast, and sensitive enzyme activity assay platforms with high integration and potential for high-throughput detection. Herein, a novel automatic and integrated micro-enzyme assay (AIμEA) platform was proposed based on a unique microreaction system(More)
Herein, a novel label-free fluorescent assay has been developed to detect the activity of thrombin and its inhibitor, based on a recombinant enhanced green fluorescence protein (EGFP) and Ni(2+) ions immobilized nitrilotriacetic acid-coated magnetic nanoparticles (Ni(2+)-NTA MNPs). The EGFP, containing a thrombin cleavage site and a hexahistidine sequence(More)
Protein engineering by resurfacing is an efficient approach to provide new molecular toolkits for biotechnology and bioanalytical chemistry. H39GFP is a new variant of green fluorescent protein (GFP) containing 39 histidine residues in the primary sequence that was developed by protein resurfacing. Herein, taking H39GFP as the signal reporter, a label-free(More)
Thiols play a crucial role in various physiological functions, and the discrimination of thiols is a significant but difficult issue. Herein, we presented a new strategy for strengthening the discrimination of thiols by a facile colorimetric sensor array composed of a series of urease-metal ion pairs. The proposed sensor array was fabricated based on the(More)