Learn More
One of the principal goals of glycoprotein research is to correlate glycan structure and function. Such correlation is necessary in order for one to understand the mechanisms whereby glycoprotein structure elaborates the functions of myriad proteins. The accurate comparison of glycoforms and quantification of glycosites are essential steps in this(More)
The mammalian neuraminidase (NEU) enzymes are found in diverse cellular compartments. Members of the family, such as NEU2 and NEU1, are cytosolic or lysosomal, while NEU3 and NEU4 are membrane-associated. NEU enzymes that act on substrates in the plasma membrane could modulate cellular signaling, cell surface glycoforms and the composition of plasma(More)
OBJECTIVE To determine the expression of epidermal growth factor (EGF) and its receptor in nasal inverted papillomas (NIP) and to clarify the function of EGF in the establishment of NIPs and the correlation with malignant phenotype. METHOD The expression of EGF and its receptor EGFR were examined by immunohistochemistry using LSAB method in sections of(More)
Protein interactions with glycolipids are implicated in diverse cellular processes. However, the study of protein-glycolipid complexes remains a significant experimental challenge. Here, we describe a powerful new assay that combines electrospray ionization mass spectrometry (ESI-MS) and picodiscs, which are composed of human sphingolipid activator protein(More)
The study focused on the annual dust storm time series of past 36 years in Siziwang County, China. Based on the MHF wavelet method, the temporal-frequency multi-time scale variations and jumping features of dust storm days was analyzed. Then, reveal the periods and turning points of dust storm series in different time-scale and forecast dust storm(More)
This work describes the application of the catch-and-release electrospray ionization-mass spectrometry (CaR-ESI-MS) assay, implemented using picodiscs (complexes comprised of saposin A and lipids, PDs), to screen mixtures of glycolipids (GLs) against water-soluble proteins to detect specific interactions. To demonstrate the reliability of the method, seven(More)
Glycoprotein receptors are influenced by myriad intermolecular interactions at the cell surface. Specific glycan structures may interact with endogenous lectins that enforce or disrupt receptor-receptor interactions. Glycoproteins bound by multivalent lectins may form extended oligomers or lattices, altering the lateral mobility of the receptor and(More)
The glycan of specific proteins can dictate the response of cells to stimuli, and thus their phenotype. We describe a chemical strategy to modify the cellular glycoform of T cells, which resulted in a modified cellular response. Our data indicate that chemical modification of the phosphatase CD45 is responsible for the observed differences in response to(More)
Sialic-acid-mediated interactions play critical roles on the cell surface, providing an impetus for the development of methods to study this important monosaccharide. In particular, photo-cross-linking sialic acids incorporated onto cell surfaces have allowed covalent capture of transient interactions between sialic acids and sialic-acid-recognizing(More)
  • 1