Chunping You

Learn More
A strategy of protein entrapment within mesoporous carbon matrices is demonstrated to probe the electrochemistry of glucose oxidase. Large surface area and remarkable electro-catalytic properties of carbon mesoporous materials make them suitable candidates for high loading of protein molecules and the promotion of heterogeneous electron transfer. In this(More)
A strategy of protein-entrapment in bicontinuous gyroidal mesoporous carbon (BGMC) nanocomposite films is described. Herein, the quasi-reversible electron transfer of redox proteins (such as glucose oxidase and myoglobin) is probed and the associated biocatalytic activity is revealed. The apparent heterogeneous electron transfer rate constant of the(More)
Polymer nanodots (PNDs) from a hybrid carbon source (glucose and glycine) which exhibit a stronger fluorescence than the PNDs from a single source (glucose or glycine) are obtained by one-pot hydrothermal treatment. It is attractive that PNDs can be used as an effective fluorescent probe for the detection of iron ions with good selectivity and sensitivity(More)
An enzyme-immobilized nanozeolite-assembled electrode was prepared by controlled assembly of nanometer-sized Linder type-L zeolite (nano-LTL-zeolite) on an indium tin oxide (ITO) glass electrode surface, and subsequent immobilization of cytochrome c. Cyclic voltammetric (CV) and amperometric experiments showed that, relative to other reported electrodes,(More)
Multilayer films containing graphene (Gr) and chitosan (CS) were prepared on glassy carbon electrodes with layer-by-layer (LBL) assembly technique. After being characterized with cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM), the electrochemical sensor based on the resulted films was developed(More)
  • 1