Learn More
The section Moutan of the genus Paeonia consists of eight species that are confined to a small area in China. A wide range of metabolites, including monoterpenoid glucosides, flavonoids, tannins, stilbenes, triterpenoids, steroids, paeonols, and phenols, have been found in the species belonging to section Moutan. However, although previous studies have(More)
ETHNOPHARMACOLOGICAL RELEVANCE Paeonia suffruticosa Andrews (PSE) is a well-known Chinese medicine that has been widely used as an anti-tumor, anti-oxidative and anti-inflammatory agent. cis- and trans-gnetin H are two resveratrol oligomers isolated from the seeds of PSE. Although resveratrol is widely considered to be one of the most valuable natural(More)
OBJECTIVE To study the chemical constituents from seeds of Paeonia sufruticosa. METHOD Various chromatographic techniques were used to isolate and purify the constituents, their physico-chemical properties and spectral data were employed to elucidate their structures. RESULT Thirteen compounds were isolated and identified as: paeoniflorin (1),(More)
A facile and scalable in situ synthesis strategy is developed to fabricate carbon-encapsulated Fe3O4 nanoparticles homogeneously embedded in two-dimensional (2D) porous graphitic carbon nanosheets (Fe3O4@C@PGC nanosheets) as a durable high-rate lithium ion battery anode material. With assistance of the surface of NaCl particles, 2D Fe@C@PGC nanosheets can(More)
A facile and scalable in situ chemical vapor deposition (CVD) technique using metal precursors as a catalyst and a three-dimensional (3D) self-assembly of NaCl particles as a template is developed for one-step fabrication of 3D porous graphene networks anchored with Sn nanoparticles (5-30 nm) encapsulated with graphene shells of about 1 nm (Sn@G-PGNWs) as a(More)
A facile and scalable 2D spatial confinement strategy is developed for in situ synthesizing highly crystalline MoS2 nanosheets with few layers (≤5 layers) anchored on 3D porous carbon nanosheet networks (3D FL-MoS2@PCNNs) as lithium-ion battery anode. During the synthesis, 3D self-assembly of cubic NaCl particles is adopted to not only serve as a template(More)
Two-dimensional (2D) porous graphitic carbon nanosheets (PGC nanosheets) as a high-rate anode material for lithium storage were synthesized by an easy, low-cost, green, and scalable strategy that involves the preparation of the PGC nanosheets with Fe and Fe3O4 nanoparticles embedded (indicated with (Fe&Fe3O4)@PGC nanosheets) using glucose as the carbon(More)
Poor rate capability and cycling performance are the major barriers to the application of lithium rich layered oxides (LLOs) as the next generation cathodes materials for lithium-ion batteries. In this paper, a novel surface double phase network modification has been applied to enhance the rate property of Li1.2Co0.13Ni0.13Mn0.54O2 (LR) via flexible(More)
Graphene/Cu composites were fabricated through a graphene in-situ grown approach, which involved ball-milling of Cu powders with PMMA as solid carbon source, in-situ growth of graphene on flaky Cu powders and vacuum hot-press sintering. SEM and TEM characterization results indicated that graphene in-situ grown on Cu powders guaranteed a homogeneous(More)
In this study, we demonstrated nitrogen-doped graphene network supported few-layered graphene shell encapsulated Cu nanoparticles (NPs) (Cu@G-NGNs) as a sensing platform, which were constructed by a simple and scalable in situ chemical vapor deposition (CVD) technique with the assistance of a self-assembled three-dimensional (3D) NaCl template. Compared(More)