Chunming Huang

Learn More
Heterojunctions between three-dimensional (3D) semiconductors with different bandgaps are the basis of modern light-emitting diodes, diode lasers and high-speed transistors. Creating analogous heterojunctions between different 2D semiconductors would enable band engineering within the 2D plane and open up new realms in materials science, device physics and(More)
The correlation between liver stiffness (LS), measured by ultrasonic transient elastometry (FibroScan), and the presence and severity of esophageal varices (EV) in patients with viral cirrhosis of the liver has not been well documented to date. The study described here investigated the value of using FibroScan to predict EV. Patients with cirrhosis (200(More)
Monolayers of transition metal dichalcogenides (TMDCs) are atomically thin direct-gap semiconductors with potential applications in nanoelectronics, optoelectronics, and electrochemical sensing. Recent theoretical and experimental efforts suggest that they are ideal systems for exploiting the valley degrees of freedom of Bloch electrons. For example, Dirac(More)
The understanding of the metal and transition metal dichalcogenide (TMD) interface is critical for future electronic device technologies based on this new class of two-dimensional semiconductors. Here, we investigate the initial growth of nanometer-thick Pd, Au, and Ag films on monolayer MoS2. Distinct growth morphologies are identified by atomic force(More)
First-order phase transitions in solids are notoriously challenging to study. The combination of change in unit cell shape, long range of elastic distortion and flow of latent heat leads to large energy barriers resulting in domain structure, hysteresis and cracking. The situation is worse near a triple point, where more than two phases are involved. The(More)
How to manage the message passing among inter processor cores with lower overhead is a great challenge when the multi-core system is the contemporary solution to satisfy high performance and low energy demands in general and embedded computing domains. Generally speaking, the networks-on-chip connects the distributed multi-core system. It takes charge of(More)
Tunable optical transitions in ultrathin layered 2-dimensional (2D) materials unveil the electronic structures of materials and provide exciting prospects for potential applications in optics and photonics. Here, we present our realization of dynamic optical modulation of layered metal chalcogenide nanoplates using ionic liquid (IL) gating over a wide(More)
As current electric power communication network planning can hardly consider multiple design objectives simultaneously, we proposed a general optimization model of multiple objectives optical network planning in electric power communication systems, based on Pareto optimization and genetic algorithms. The optical network in power system is modelled(More)
  • 1