Chunlai Chen

Learn More
During protein synthesis, the ribosome translates nucleotide triplets in single-stranded mRNA into polypeptide sequences. Strong downstream mRNA secondary structures, which must be unfolded for translation, can slow or even halt protein synthesis. Here we used single-molecule fluorescence resonance energy transfer to determine reaction rates for specific(More)
We employ single-molecule fluorescence resonance energy transfer (smFRET) to study structural dynamics over the first two elongation cycles of protein synthesis, using ribosomes containing either Cy3-labeled ribosomal protein L11 and A- or P-site Cy5-labeled tRNA or Cy3- and Cy5-labeled tRNAs. Pretranslocation (PRE) complexes demonstrate fluctuations(More)
During protein synthesis, deacylated transfer RNAs leave the ribosome via an exit (E) site after mRNA translocation. How the ribosome regulates tRNA dissociation and whether functional linkages between the aminoacyl (A) and E sites modulate the dynamics of protein synthesis have long been debated. Using single molecule fluorescence resonance energy transfer(More)
EF4 (LepA), a strongly conserved protein, is important for bacterial growth and functional protein biosynthesis under certain conditions and is quite similar structurally to the translocase EF-G. The elongation cycle in protein synthesis is characterized by ribosome oscillation between pretranslocation (PRE) and posttranslocation (POST) complexes. Here,(More)
Recordings from single molecule experiments can be aggregated to determine average kinetic properties of the system under observation. The kinetics after a synchronized reaction step can be interpreted using all of the standard tools developed for ensemble perturbation experiments. The kinetics leading up to a synchronized event, determined by the lifetimes(More)
During the translocation step of prokaryotic protein synthesis, elongation factor G (EF-G), a guanosine triphosphatase (GTPase), binds to the ribosomal PRE-translocation (PRE) complex and facilitates movement of transfer RNAs (tRNAs) and messenger RNA (mRNA) by one codon. Energy liberated by EF-G's GTPase activity is necessary for EF-G to catalyze rapid and(More)
This paper conducts a comparative technical efficiency analysis of 21 electricity generation plants (12 private and 9 public) using panel data of 6 years (1998-2003), and two stat-of–the art methodologies: Stochastic Frontier Analysis (SFA) and Data Envelopment Analysis (DEA). The results show a mixed technical and scale efficiency scores for the public and(More)
Hybridization of nucleic acids with secondary structure is involved in many biological processes and technological applications. To gain more insight into its mechanism, we have investigated the kinetics of DNA hybridization/denaturation via fluorescence resonance energy transfer (FRET) on perfectly matched and single-base-mismatched DNA strands. DNA(More)
Combining gold nanoparticles (GNPs) as fluorescence quencher and aptamer as probe, we have developed protein biosensors by using DNA-modified GNPs. We examined how the experimental design, such as the type of interaction between DNA strands and GNPs, temperature, and microenvironment of aptamer, influences the recognition ability of the biosensor. Under our(More)