Learn More
Hepatitis B virus (HBV) infection is a global health threat with 240 million chronic carriers at high risk to develop hepatocellular carcinoma. Current antiviral treatment can efficiently control viral replication and reduce liver inflammation, but is still quite far from achieving a cure. Significant progress has been made in understanding the virus life(More)
Covalently closed circular DNA (cccDNA) serves as the transcriptional template of hepatitis B virus (HBV) replication in the nucleus of infected cells. It ensures the persistence of HBV even if replication is blocked. Immune-mediated killing of infected hepatocytes, cell division, or cytokine induced non-cytolytic degradation of cccDNA can induce the loss(More)
Hepatitis B virus (HBV) is a major global health concern, and the development of curative therapeutics is urgently needed. Such efforts are impeded by the lack of a physiologically relevant, pre-clinical animal model of HBV infection. Here, we report that expression of the HBV entry receptor, human sodium-taurocholate cotransporting polypeptide (hNTCP), on(More)
Hepatitis B virus (HBV) is a promising target for therapies based on RNA interference (RNAi) since it replicates via RNA transcripts that are vulnerable to RNAi silencing. Clinical translation of RNAi technology, however, requires improvements in potency, specificity and safety. To this end, we systematically compared different strategies to express(More)
  • 1