Learn More
We established a genomic model of quantitative trait with genomic additive and dominance relationships that parallels the traditional quantitative genetics model, which partitions a genotypic value as breeding value plus dominance deviation and calculates additive and dominance relationships using pedigree information. Based on this genomic model, two sets(More)
Dominance effect may play an important role in genetic variation of complex traits. Full featured and easy-to-use computing tools for genomic prediction and variance component estimation of additive and dominance effects using genome-wide single nucleotide polymorphism (SNP) markers are necessary to understand dominance contribution to a complex trait and(More)
The traditional quantitative genetics model was used as the unifying approach to derive six existing and new definitions of genomic additive and dominance relationships. The theoretical differences of these definitions were in the assumptions of equal SNP effects (equivalent to across-SNP standardization), equal SNP variances (equivalent to within-SNP(More)
A previous genomewide association study (GWAS) identified SNP markers associated with propensity to migrate of rainbow and steelhead trout (Oncorhynchus mykiss) in a connected population with free access to the ocean in Upper Yakima River (UYR) and a population in Upper Mann Creek (UMC) that has been sequestered from its access to the ocean for more than 50(More)
  • 1