Learn More
Temperature and light are important environmental stimuli that have a profound influence on the growth and development of plants. Wheat varieties can be divided on the basis of whether they require an extended period of cold to flower (vernalization). Varieties that have a requirement for vernalization also tend to be winter hardy and are able to withstand(More)
For plants to flower at the appropriate time, they must be able to perceive and respond to various internal and external cues. Wheat is generally a long-day plant that will go through phase transition from vegetative to floral growth as days are lengthening in spring and early summer. In addition to this response to day-length, wheat cultivars may be(More)
Grain development, germination and plant development under abiotic stresses are areas of biology that are of considerable interest to the cereal community. Within the Investigating Gene Function programme we have produced the resources required to investigate alterations in the transcriptome of hexaploid wheat during these developmental processes. We have(More)
A novel member of the AP2/ERF transcription factor family, SlERF5, was identified from a tomato mature leaf cDNA library screen. The complete DNA sequence of SlERF5 encodes a putative 244-amino acid DNA-binding protein which most likely acts as a transcriptional regulator and is a member of the ethylene responsive factor (ERF) superfamily. Analysis of the(More)
Carotenoids represent some of the most important secondary metabolites in the human diet, and tomato (Solanum lycopersicum) is a rich source of these health-promoting compounds. In this work, a novel and fruit-related regulator of pigment accumulation in tomato has been identified by artificial neural network inference analysis and its function validated in(More)
Leaf primary metabolism responds to changes in both supply of inputs and demand for products. Metabolic control in leaves changes both spatially and temporally. Using leaves of C(3) temperate Gramineae, the spatial control of carbohydrate metabolism has been studied using a range of approaches. Single-cell sampling and subsequent analysis of metabolites,(More)
Nitrogen is the major determinant of crop yield and quality and the precise management of nitrogen fertilizer is an important issue for farmers and environmentalists. Despite this, little is known at the level of gene expression about the response of field crops to different amounts and forms of nitrogen fertilizer. Here we use expressed sequence tag(More)
We describe a highly efficient two-step single-cell reverse transcriptase-polymerase chain reaction technique for analyzing gene expression at the single-cell level. Good reproducibility and a linear dose response indicated that the technique has high specificity and sensitivity for detection and quantification of rare RNA. Actin could be used as an(More)
The contents of single plant cells can be sampled using glass microcapillaries. By combining such single-cell sampling with reverse transcription-polymerase chain reaction (RT-PCR), transcripts of individual genes can be identified and, in principle, quantified. This provides a valuable technique for the analysis and quantification of the intercellular(More)
Grain dormancy and germination are areas of biology that are of considerable interest to the cereal community. We have used a 9,155-feature wheat unigene cDNA microarray resource to investigate changes in the wheat embryo transcriptome during late grain development and maturation and during the first 48 h of postimbibition germination. In the embryo 392(More)