Chung-sik Choi

Learn More
This basic science review examines the role of cGMP and cGMP-dependent protein kinase (PKG) in the regulation of vascular smooth muscle cell (VSMC) phenotype. The first such studies suggested a role for nitric oxide (NO) and atrial natriuretic peptides (ANP), and the downstream second messenger cGMP, in the inhibition of VSMC proliferation. Subsequently,(More)
The ability of the endothelium to produce nitric oxide, which induces generation of cyclic guanosine monophosphate (cGMP) that activates cGMP-dependent protein kinase (PKG-I), in vascular smooth muscle cells (VSMCs), is essential for the maintenance of vascular homeostasis. Yet, disturbance of this nitric oxide/cGMP/PKG-I pathway has been shown to play an(More)
The type-I cGMP-dependent protein kinase (PKG-I) expression regulation is not yet completely understood. In this study, we examined the role of 3'-untranslated region (3'UTR)-PKG-I messenger RNA (mRNA) in the control of PKG-I expression in vascular smooth muscle cells (VSMCs). Using a 3'-rapid amplification of cDNA ends (RACE) for the amplification of(More)
We hypothesized that transgenic mice overexpressing the p22(phox) subunit of the NADPH oxidase selectively in smooth muscle (Tg(p22smc)) would exhibit an exacerbated response to transluminal carotid injury compared to wild-type mice. To examine the role of reactive oxygen species (ROS) as a mediator of vascular injury, the injury response was quantified by(More)
Disruption of blood flow promotes endothelial dysfunction and predisposes vessels to remodeling and atherosclerosis. Recent findings suggest that spatial and temporal tuning of local Ca2+ signals along the endothelium is vital to vascular function. In this study, we examined whether chronic flow disruption causes alteration of dynamic endothelial Ca2+(More)
  • 1