Learn More
One major task in the post-genome era is to reconstruct proteomic and genomic interacting networks using high-throughput experiment data. To identify essential nodes/hubs in these interactomes is a way to decipher the critical keys inside biochemical pathways or complex networks. These essential nodes/hubs may serve as potential drug-targets for developing(More)
BACKGROUND Many research results show that the biological systems are composed of functional modules. Members in the same module usually have common functions. This is useful information to understand how biological systems work. Therefore, detecting functional modules is an important research topic in the post-genome era. One of functional module detecting(More)
BACKGROUND Proteins control and mediate many biological activities of cells by interacting with other protein partners. This work presents a statistical model to predict protein interaction networks of Drosophila melanogaster based on insight into domain interactions. RESULTS Three high-throughput yeast two-hybrid experiments and the collection in FlyBase(More)
BACKGROUND Selecting an appropriate substitution model and deriving a tree topology for a given sequence set are essential in phylogenetic analysis. However, such time consuming, computationally intensive tasks rely on knowledge of substitution model theories and related expertise to run through all possible combinations of several separate programs. To(More)
BACKGROUND The recent increase in the use of high-throughput two-hybrid analysis has generated large quantities of data on protein interactions. Specifically, the availability of information about experimental protein-protein interactions and other protein features on the Internet enables human protein-protein interactions to be computationally predicted(More)
By economic value, shrimp is currently the most important seafood commodity worldwide, and these animals are often the subject of scientific research in shrimp farming countries. High throughput methods, such as expressed sequence tags (ESTs), were originally developed to study human genomics, but they are now available for studying other important(More)
Genetic research on influenza virus biology has been informed in large part by nucleotide variants present in seasonal or pandemic samples, or individual mutants generated in the laboratory, leaving a substantial part of the genome uncharacterized. Here, we have developed a single-nucleotide resolution genetic approach to interrogate the fitness effect of(More)
Widely used chemical genetic screens have greatly facilitated the identification of many antiviral agents. However, the regions of interaction and inhibitory mechanisms of many therapeutic candidates have yet to be elucidated. Previous chemical screens identified Daclatasvir (BMS-790052) as a potent nonstructural protein 5A (NS5A) inhibitor for Hepatitis C(More)
POWER, the PhylOgenetic WEb Repeater, is a web-based service designed to perform user-friendly pipeline phylogenetic analysis. POWER uses an open-source LAMP structure and infers genetic distances and phylogenetic relationships using well-established algorithms (ClustalW and PHYLIP). POWER incorporates a novel tree builder based on the GD library to(More)
Myasthenia gravis (MG) is an antibody and complement mediated autoimmune disease. Serum CXC chemokine ligand 13 (CXCL13) was found to be elevated in MG patients and high CXCL13 level was associated with severe clinical stages, especially in females with thymic lymphoid hyperplasia. Both protein and mRNA of CXCL13 and CXC chemokine receptor 5 (CXCR5) in the(More)