Learn More
In this paper, we propose a semidefinite optimization (SDP) based model for the class of minimax two-stage stochastic linear optimization problems with risk aversion. The distribution of the second-stage random variables is assumed to be chosen from a set of multivariate distributions with known mean and second moment matrix. For the minimax stochastic(More)
We examine how a flexible process structure might be designed to allow the production system to better cope with fluctuating supply and demand, and to match supply with demand in a more effective manner. We argue that good flexible process structures are essentially highly connected graphs, and use the concept of graph expansion (a measure of graph(More)
In recent years, approximation algorithms based on randomized rounding of fractional optimal solutions have been applied to several classes of discrete optimization problems. In this paper, we describe a class of rounding methods that exploits the structure and geometry of the underlying problem to round fractional solution to 0 –1 solution. This is(More)
We address the problem of evaluating the expected optimal objective value of a 0-1 optimization problem under uncertainty in the objective coefficients. The probabilistic model we consider prescribes limited marginal distribution information for the objective coefficients in the form of moments. We show that for a fairly general class of marginal(More)
Authors are encouraged to submit new papers to INFORMS journals by means of a style file template, which includes the journal title. However, use of a template does not certify that the paper has been accepted for publication in the named journal. INFORMS journal templates are for the exclusive purpose of submitting to an INFORMS journal and should not be(More)
We characterize the class of Arrovian Social Welfare Functions (ASWFs) as integer solutions to a collection of linear inequalities. Many of the classical possibility, impossibility, and characterization results can be derived in a simple and unified way from this integer program. Among the new results we derive is a characterization of preference domains(More)
We study strategic issues in the Gale-Shapley stable marriage model. In the first part of the paper, we derive the optimal cheating strategy and show that it is not always possible for a woman to recover her women-optimal stable partner from the men-optimal stable matching mechanism when she can only cheat by permuting her preferences. In fact, we show,(More)
We present the first constant-factor approximation algorithm for a fundamental problem: the store-and-forward packet routing problem on arbitrary networks. Furthermore, the queue sizes required at the edges are bounded by an absolute constant. Thus, this algorithm balances a global criterion (routing time) with a local criterion (maximum queue size) and(More)
In recent years approximation algorithms based on primal-dual methods have been successfully applied to a broad class of discrete optimization problems. In this paper, we propose a generic primal-dual framework to design and analyze approximation algorithms for integer programming problems of the covering type that uses valid inequalities in its design. The(More)
By adding a set of redundant constraints, and by iteratively refining the approximation, we show that a commercial solver is able to routinely solve moderate-size strategic safety stock placement problems to optimality. The speed-up arises because the solver automatically generates strong flow cover cuts using the redundant constraints.