Chung Kil Won

Learn More
Estradiol prevents neuronal cell death through the inhibition of apoptotic signals. This study investigated whether estradiol modulates the anti-apoptotic signal through the activation of Akt and its downstream targets, including forkhead transcription factors FKHR and FHKRL1. Adult female rats were ovariectomied and treated with estradiol prior to middle(More)
The effects of topical application of interleukin-6 (IL-6) on the short and long latency evoked unit responses of the neurones in the primary somatosensory (SI) cortex were determined quantitatively in anaesthetized rats. IL-6 (0.01, 0.1, 1.0 units) significantly suppressed (-15.13 +/- 3.4%) short latency afferent sensory responses, while it induced(More)
Estradiol prevents neuronal cell death through the activation of cell survival signals and the inhibition of apoptotic signals. This study investigated whether estradiol modulates the anti-apoptotic signal through the phosphorylation of Akt and its downstream target, glycogen synthase kinase 3beta (GSK3beta). Adult female rats were ovariectomized and(More)
Single unit responses of the primary somatosensory (SI) cortical neurons to the stimulation of the forepaw single digit were monitored in anesthetized rats before and after subcutaneous injection of lidocaine to an ipsilateral homologous receptive field (IHRF). Quantitative determination of the temporal changes of afferent sensory transmission was done by(More)
The effect of topical application of interleukin 2 (IL-2) on afferent sensory transmission to the neurones in the primary somatosensory (SI) cortex was determined quantitatively in anaesthetized rats. IL-2 (0.1, 1.0, 5.0 units) significantly suppressed afferent sensory transmission in SI cortical neurones (n = 19) in a dose-dependent manner. IL-2-induced(More)
Estradiol prevents neuronal cell death through the inhibition of apoptotic signals and the activation of cell survival signals. This study investigated whether estradiol modulates the anti-apoptotic signal through the activation of Akt and its downstream targets, including Bad, Bcl-x(L), and 14-3-3. Adult female rats were ovariectomied and treated with(More)
Vitamin C (ascorbic acid) is an essential nutrient of most living tissues that readily acts as a strong reducing agent, which is abundant in fruits and vegetables. Although, it inhibits cell growth in many human cancer cells in vitro, treatment in cancer is still controversial. Hence, the purpose of this study was to investigate the molecular mechanism of(More)
Activity-dependent changes of the conduction latency of single A beta fibers of primary afferent neurons were characterized in both neuropathic (L4 and L6 ligated) and normal rats. Activity-dependent increases in conduction latency of dorsal root fibers in neuropathic rats were significantly stronger than those in normal rats. Different profiles of activity(More)
Activity-dependent changes of conduction velocity (CV) and conduction block in single A(delta) fibers of primary afferent neurons were characterized in a rat model of neuropathy (NP). Injured dorsal root (DR) fiber in NP rats exhibited profoundly greater decreases of CV following impulse activity than did DR fiber in normal rats. Activity-dependent(More)
The effects of acute lowering of body temperature on afferent sensory transmission to the primary somatosensory cortex were determined quantitatively in anaesthetized rats and hamsters. Rats showed no change in afferent sensory transmission until 27 degrees C, but dramatic suppression between 26 degrees C and 22 degrees C, reaching 100% inhibition at 21(More)