Chung F. Wong

Learn More
Even if the structure of a receptor has been determined experimentally, it may not be a conformation to which a ligand would bind when induced fit effects are significant. Molecular docking using such a receptor structure may thus fail to recognize a ligand to which the receptor can bind with reasonable affinity. Here, we examine one way to alleviate this(More)
UNLABELLED Modern sequencing instruments have the capability to produce millions of short reads every day. The large number of reads produced in conjunction with variations between reads and reference genomic sequences caused both by legitimate differences, such as single-nucleotide polymorphisms and insertions/deletions (indels), and by sequencer errors(More)
Examining the potential for electrostatic complementarity between a ligand and a receptor is a useful technique for rational drug design, and can demonstrate how a system prioritizes interactions when allowed to optimize its charge distribution. In this computational study, we implemented the previously developed, continuum solvent-based charge optimization(More)
In several previous studies, we performed sensitivity analysis to gauge the relative importance of different atomic partial charges in determining protein-ligand binding. In this work, we gain further insights by decomposing these results into three contributions: desolvation, intramolecular interactions, and intermolecular interactions, again based on a(More)
This article introduces a screening performance index (SPI) to help select from a number of experimental structures one or a few that are more likely to identify more actives among its top hits from virtual screening of a compound library. It achieved this by docking only known actives to the experimental structures without considering a large number of(More)
Protein kinases have high structural plasticity: their structure can change significantly, depending on what ligands are bound to them. Rigid-protein docking methods are not capable of describing such effects. Here, we present a new flexible-ligand flexible-protein docking model in which the protein can adopt conformations between two extremes observed(More)
  • 1