Chung-Ching Shen

Learn More
Model-based design methods based on dataflow models of computation are attractive for design and implementation of wireless communication systems because of their intuitive correspondence to communication system block diagrams, and the formal structure that is exposed through formal dataflow representations (e.g., see [2]). In this paper, we introduce a(More)
Wireless sensor network (WSN) applications have been studied extensively in recent years. Such applications involve resource-limited embedded sensor nodes that have small size and low power requirements. Based on the need for extended network lifetimes in WSNs in terms of energy use, the energy efficiency of computation and communication operations in the(More)
Digital signal processing (DSP) applications involve processing long streams of input data. It is important to take into account this form of processing when implementing embedded software for DSP systems. Task-level vectorization, or block processing, is a useful dataflow graph transformation that can significantly improve execution performance by allowing(More)
Development of multimedia systems on heterogeneous platforms is a challenging task with existing design tools due to a lack of rigorous integration between high level abstract modeling, and low level synthesis and analysis. In this paper, we present a new dataflow-based design tool, called the targeted dataflow interchange format (TDIF), for design,(More)
LIDE (the DSPCAD Lightweight Dataflow Environment) is a flexible, lightweight design environment that allows designers to experiment with dataflow-based approaches for design and implementation of digital signal processing (DSP) systems. LIDE contains libraries of dataflow graph elements (primitive actors, hierarchical actors, and edges) and utilities that(More)
Most image processing applications are characterized by computation-intensive operations, and high memory and performance requirements. Parallelized implementation on shared-memory systems offer an attractive solution to this class of applications. However, we cannot thoroughly exploit the advantages of such architectures without proper modeling and(More)
Dataflow is a well known computational model and is widely used for expressing the func-tionality of digital signal processing (DSP) applications, such as audio and video data stream processing, digital communications, and image processing. These applications usually require real-time processing capabilities and have critical performance constraints.(More)
Wireless sensor network (WSN) applications have been studied extensively in recent years. Such applications involve resource-limited embedded sensor nodes that have small size and low power requirements. Based on the need for extended network lifetimes in WSNs in terms of energy use, the energy efficiency of computation and communication operations in the(More)
—DICE (the DSPCAD Integrative Command Line Environment) is a package of utilities that facilitates efficient management of software projects. Key areas of emphasis in DICE are cross-platform operation, support for projects that integrate heterogeneous programming languages, and support for applying and integrating different kinds of design and testing(More)
Dataflow-based application specifications are widely used in model-based design methodologies for signal processing systems. In this paper, we develop a new model called the dataflow schedule graph (DSG) for representing a broad class of dataflow graph schedules. The DSG provides a graphical representation of schedules based on dataflow semantics. In(More)