Ya-Chin Yang12
Chun-Hwei Tai7
Huai-Ren Chang6
Ming-Kai Pan6
12Ya-Chin Yang
7Chun-Hwei Tai
6Huai-Ren Chang
6Ming-Kai Pan
Learn More
An increase in neuronal burst activities in the subthalamic nucleus (STN) is a well-documented electrophysiological feature of Parkinson disease (PD). However, the causal relationship between subthalamic bursts and PD symptoms and the ionic mechanisms underlying the bursts remain to be established. Here, we have shown that T-type Ca(2+) channels are(More)
The NMDA receptor opens in response to binding of NMDA and glycine. However, it remains unclear where and how gating of the NMDA receptor pore is accomplished. We show that different point mutations between S645 and I655 (thus including the highly conserved SYTANLAAF motif) of M3c in NR2B lead to constitutively open channels. The current through these(More)
Tetrodotoxin-resistant (TTX-R) Na(+) channels are much less susceptible to external TTX but more susceptible to external Cd(2+) block than tetrodotoxin-sensitive (TTX-S) Na(+) channels. Both TTX and Cd(2+) seem to block the channel near the "DEKA" ring, which is probably part of a multi-ion single-file region adjacent to the external pore mouth and is(More)
Felbamate (FBM) is a potent nonsedative anticonvulsant whose clinical effect may be related to the inhibition of N-methyl-D-aspartate (NMDA) currents, but the exact molecular action remains unclear. Using whole-cell patch-clamp recording in rat hippocampal neurons, we found that submillimolar FBM effectively modifies the gating process of NMDA channels.(More)
The fourth segment of domain 4 (S4/D4) in Na+ channels is a voltage sensor especially implicated in channel inactivation. Although there has been evidence that S4/D4 moves externally during membrane depolarization, whether (and if so, how) the movement leads to conformational changes of the inactivation gate remains unknown. We added a positive charge just(More)
Tetrodotoxin-resistant (TTX-R) Na(+) channels are 1,000-fold less sensitive to TTX than TTX-sensitive (TTX-S) Na(+) channels. On the other hand, TTX-R channels are much more susceptible to external Cd(2+) block than TTX-S channels. A cysteine (or serine) residue situated just next to the aspartate residue of the presumable selectivity filter "DEKA" ring of(More)
The N-methyl-d-aspartate receptor (NMDAR) channel is one of the major excitatory amino acid receptors in the mammalian brain. Since external Mg(2+) blocks the channel in an apparently voltage-dependent fashion, this ligand-gated channel displays intriguing voltage-dependent control of Na(+) and Ca(2+) permeability and thus plays an important role in(More)
Identifying conserved gene clusters is an important step toward understanding the evolution of genomes and predicting the functions of genes. A famous model to capture the essential biological features of a conserved gene cluster is called the gene-team model. The problem of finding the gene teams of two general sequences is the focus of this paper. For(More)
Inward rectifier potassium channels conduct K+ across the cell membrane more efficiently in the inward than outward direction in physiological conditions. Voltage-dependent and flow-dependent blocks of outward K+ currents by intracellular polyamines (e.g., spermine (SPM)) have been proposed as the major mechanisms underlying inward rectification. In this(More)