Learn More
This paper describes a novel numerical algorithm for simulating interfacial dynamics of non-Newtonian fluids. The interface between two immiscible fluids is treated as a thin mixing layer across which physical properties vary steeply but continuously. The property and evolution of the interfacial layer is governed by a phase-field variable / that obeys a(More)
In this note we examine the implications of Cahn-Hilliard diffusion on mass conservation when using a phase-field model for simulating two-phase flows. Even though the phase-field variable φ is conserved globally, a drop shrinks spontaneously while φ shifts from its expected values in the bulk phases. Those changes are found to be proportional to the(More)
This work is motivated by the recent experimental development of microfluidic flow-focusing devices that produce highly monodisperse simple or compound drops. Using finite elements with adaptive meshing in a diffuse-interface framework, we simulate the breakup of simple and compound jets in coflowing conditions, and explore the flow regimes that prevail in(More)
This Letter reports numerical simulations motivated by experimental observations of an unusual inverted-heart shape for bubbles rising in an anisotropic micellar solution. We explain the bubble shape by assuming that the micelles are aligned into a nematic phase, whose anchoring energy on the bubble competes with the interfacial tension and the bulk(More)
We describe a 96-well microplate with fluidically connected wells that enables the continuous fluid perfusion between wells without the need for external pumping. A single unit in such a perfusion microplate consists of three wells: a source well, a sample (cell culture) well in the middle and a waste well. Fluid perfusion is achieved using a combination of(More)
It is well known that neutrophils take much longer to traverse the pulmonary capillary bed than erythrocytes, and this is likely due to differences in the structure and rheology of the cells. In this study, we simulate the transit of a neutrophil in a capillary using a Newtonian drop model and a viscoelastic drop model. The cell membrane is represented by(More)
ETHNOPHARMACOLOGICAL RELEVANCE Flos populi (male inflorescence of Populus tomentosa Carrière) has been traditionally used in East Asian countries for the treatment of various inflammatory diseases, strengthening the spleen and stomach, anti-rheumatic, anti-tumor and anti-diarrhoeal. AIM OF THE STUDY To evaluate the in vivo or in vitro anti-diarrhoeal and(More)
We use dynamic simulations to explore the pairwise interaction and multiparticle assembly of droplets suspended in a nematic liquid crystal. The computation is based on a regularized Leslie-Ericksen theory that allows orientational defects. The homeotropic anchoring on the drop surface is of sufficient strength as to produce a satellite point defect near(More)