Chunchao Wang

Learn More
High salinity is one of the main factors limiting cotton growth and productivity. The genes that regulate salt stress in TM-1 upland cotton were monitored using microarray and real-time PCR (RT-PCR) with samples taken from roots. Microarray analysis showed that 1503 probe sets were up-regulated and 1490 probe sets were down-regulated in plants exposed for(More)
Rice is a very important food staple that feeds more than half the world's population. Two major Asian cultivated rice (Oryza sativa L.) subspecies, japonica and indica, show significant phenotypic variation in their stress responses. However, the molecular mechanisms underlying this phenotypic variation are still largely unknown. A common link among(More)
JASMONATE ZIM-domain (JAZ) proteins play important roles in plant defence and growth by regulating jasmonate signalling. Through data mining, we discovered that the JAZ7 gene was up-regulated in darkness. In the dark, the jaz7 mutant displayed more severe leaf yellowing, quicker chlorophyll degradation, and higher hydrogen peroxide accumulation compared(More)
The cotton diploid species, Gossypium arboreum, shows important properties of stress tolerance and good genetic stability. In this study, through mRNA-seq, we de novo assembled the unigenes of multiple samples with 3h H(2)O, NaCl, or PEG treatments in leaf, stem and root tissues and successfully obtained 123,579 transcripts of G. arboreum, 89,128 of which(More)
While previous studies have shown that histone modifications could influence plant growth and development by regulating gene transcription, knowledge about the relationships between these modifications and gene expression is still limited. This study used chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-Seq), to investigate the(More)
Rice SPX domain gene, OsSPX1, plays an important role in the phosphate (Pi) signaling network. Our previous work showed that constitutive overexpression of OsSPX1 in tobacco and Arabidopsis plants improved cold tolerance while also decreasing total leaf Pi. In the present study, we generated rice antisense and sense transgenic lines of OsSPX1 and found that(More)
OsSPX1, a rice SPX domain gene, involved in the phosphate (Pi)-sensing mechanism plays an essential role in the Pi-signalling network through interaction with OsPHR2. In this study, we focused on the potential function of OsSPX1 during rice reproductive phase. Based on investigation of OsSPX1 antisense and sense transgenic rice lines in the paddy fields, we(More)
Chromatin structure has an important role in modulating gene expression. The incorporation of histone variants into the nucleosome leads to important changes in the chromatin structure. The histone variant H2A.Z is highly conserved between different species of fungi, animals, and plants. However, dynamic changes to H2A.Z in rice have not been reported(More)
As a histone variant, H2A.Z is highly conserved among species and plays a significant role in diverse cellular processes. Here, we generated genome-wide maps of H2A.Z in Oryza sativa (rice) callus and seedling by combining chromatin immunoprecipitation using H2A.Z antibody and high-throughput sequencing. We found a significantly high peak and a small peak(More)
Polyploidy is a common evolutionary occurrence in plants. Recently, published genomes of allotetraploid G. hirsutum and its donors G. arboreum and G. raimondii make cotton an accessible polyploid model. This study used chromatin immunoprecipitation with high-throughput sequencing (ChIP-Seq) to investigate the genome-wide distribution of H3K4me3 in G.(More)
  • 1