Learn More
Alzheimer’s disease (AD) can be divided into sporadic AD (SAD) and familial AD (FAD). Most AD cases are sporadic and result from multiple etiologic factors, including environmental, genetic, and metabolic factors, whereas FAD is caused by mutations in the presenilins or amyloid-β (Aβ) precursor protein (APP) genes. A commonly used animal model for AD is the(More)
Alzheimer's disease (AD) can be divided into sporadic AD (SAD) and familial AD (FAD). Most AD cases are sporadic and may result from multiple etiologic factors, including environmental, genetic and metabolic factors, whereas FAD is caused by mutations of presenilins or amyloid-β (Aβ) precursor protein (APP). A commonly used mouse model for AD is 3xTg-AD(More)
Alzheimer's disease (AD) involves several possible molecular mechanisms, including impaired brain insulin signaling and glucose metabolism. To investigate the role of metabolic insults in AD, we injected streptozotocin (STZ), a diabetogenic compound if used in the periphery, into the lateral ventricle of the 6-month-old 3xTg-AD mice and studied the(More)
One of the major causes of chemotherapy failure in cancer treatment is multidrug resistance (MDR) which is mediated by the ABCB1/P-glycoprotein. Previously, through the use of an extensive screening process, we found that vardenafil, a phosphodiesterase 5 (PDE-5) inhibitor significantly reverses MDR in ABCB1 overexpressing cancer cells, and its efficacy was(More)
Apoptosis plays an important role in neural development and neurological disorders. In this study, we found that O-GlcNAcylation, a unique protein posttranslational modification with O-linked β-N-acetylglucosamine (GlcNAc), promoted apoptosis through attenuating phosphorylation/activation of AKT and Bad. By using co-immunoprecipitation and mutagenesis(More)
Lapatinib is active at the ATP-binding site of tyrosine kinases that are associated with the human epidermal growth factor receptor (Her-1 or ErbB1) and Her-2. It is conceivable that lapatinib may inhibit the function of ATP-binding cassette (ABC) transporters by binding to their ATP-binding sites. The aim of this study was to investigate the ability of(More)
BACKGROUND ABCC1 and ABCG2 are ubiquitous ATP-binding cassette transmembrane proteins that play an important role in multidrug resistance (MDR). In this study, we evaluated the possible interaction of vandetanib, an orally administered drug inhibiting multiple receptor tyrosine kinases, with ABCC1 and ABCG2 in vitro. METHODOLOGY AND PRINCIPAL FINDINGS MDR(More)
A panel of clinically used tyrosine kinase inhibitors were compared and nilotinib was found to most potently sensitize specific anticancer agents by blocking the functions of ABCB1/P-glycoprotein, ABCG2/BCRP and ABCC10/MRP7 transporters involved in multi-drug resistance. Nilotinib appreciably enhanced the antitumor response of (1) paclitaxel in the ABCB1-(More)
Apatinib, a small-molecule multitargeted tyrosine kinase inhibitor, is in phase III clinical trial for the treatment of patients with non-small-cell lung cancer and gastric cancer in China. In this study, we determined the effect of apatinib on the interaction of specific antineoplastic compounds with P-glycoprotein (ABCB1), multidrug resistance protein 1(More)
The adenosine tri-phosphate binding cassette (ABC) transporters are one of the largest transmembrane gene families in humans. The ABC transporters are present in a number of tissues, providing protection against xenobiotics and certain endogenous molecules. Unfortunately, their presence produces suboptimal chemotherapeutic outcomes in cancer patient tumor(More)