Learn More
BACKGROUND Our previous work has provided strong evidence that the transcription factor SOX9 is completely needed for chondrogenic differentiation and cartilage formation acting as a "master switch" in this differentiation. Heterozygous mutations in SOX9 cause campomelic dysplasia, a severe skeletal dysmorphology syndrome in humans characterized by a(More)
The transcription factor SOX9 plays an essential role in determining the fate of several cell types and is a master factor in regulation of chondrocyte development. Our aim was to determine which genes in the genome of chondrocytes are either directly or indirectly controlled by SOX9. We used RNA-Seq to identify genes whose expression levels were affected(More)
Mutations in SOX9, a gene essential for chondrocyte differentiation cause the human disease campomelic dysplasia (CD). To understand how SOX9 activates transcription, we characterized the DNA binding and cell-free transcription ability of wild-type SOX9 and a dimerization domain SOX9 mutant. Whereas formation of monomeric mutant SOX9-DNA complex increased(More)
The Data Availability statement is incorrect. The correct statement is: All relevant data are available via NCBI's Gene Expression Omnibus (GEO) (accession number GSE73984). article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original(More)
Several lines of evidence indicate that connective tissue growth factor (CTGF/CCN2) stimulates chondrocyte proliferation and maturation. Given the fact that SOX9 is essential for several steps of the chondrocyte differentiation pathway, we asked whether Ctgf (Ccn2) is the direct target gene of SOX9. We found that Ctgf mRNA was down-regulated in primary(More)
  • 1