Chun-cheng Chen

Learn More
The majority of existing wireless rate controls are based on the implicit assumption that frames are corrupted due to the random, arbitrary environmental and thermal noises. They generally reduce the channel rate on frame losses, trading lower efficiency in frequency band utilization for more robust modulation so that the current noise level may be(More)
— The limited number of orthogonal channels and the autonomous installations of hotspots and home wireless networks often leave neighboring 802.11 basic service sets (BSS's) operating on the same or overlapping channels, therefore interfering with each other. However, the 802.11 MAC does not work well in resolving inter-BSS interferences due to the(More)
Current 802.11 1 WLANs rely on the 802.11 MAC (medium access control) and careful channel assignment to resolve intra-and inter-BSS (basic service set) interferences respectively. However, because wireless transmissions interfere with each other in a range that is larger than the communication range and because there is only a very limited number of(More)
The limited number of orthogonal channels and autonomous installations of hot spots and home wireless networks often leave neighboring 802.11 basic service sets (BSSs) operating on the same or overlapping channels, therefore interfering with each other. However, the 802.11 medium access control (MAC) does not work well in resolving inter-BSS interference(More)
—As more and more cities plan to deploy municipal wireless mesh networks to provide publicly-accessible infrastructure , it becomes critical to come up with a deployment plan that provides sufficient accessibility with financial and technological constraints. In this paper, we consider deploying the mesh routers that are equipped with directional antennas(More)
Bioceramic coatings like hydroxyapatite (HA) have shown promising bioactive properties in load-bearing implant applications. The aim of this work is to deposit functionally graded HA/Ti layers consisting of an underlying Ti bond coat, the alternating layer, and an HA top-layer on Ti6Al4V substrates using plasma spray to improve the coating-substrate(More)
Titanium metal has good biocompatibility, superior mechanical properties and excellent corrosion resistance. Like most metals, however, it exhibits poor bioactive properties and fails to bond to bone tissue. To improve its bioactivity, bioactive molecules, such as peptides, can be grafted onto titanium surfaces. In order to do this, the first step may be to(More)
OBJECTIVE The objective of this study was to investigate the effect of different Er,Cr:YSGG laser parameters on the morphology of irradiated dentine and the shear bond strength between resin composites and irradiated dentine. MATERIALS AND METHODS Dentine specimens prepared from extracted human third molars were randomly assigned to six groups, including(More)
Calcium silicate cement (CSC) has favorable biocompatible properties that may support its clinical use as bone defect repair. A hybrid cement was developed consisting of a chitosan oligosaccharide (COS) solution in a liquid phase and gelatin (GLT)-containing calcium silicate powder in a solid phase. The combination of GLT and COS was chosen due to the(More)