Learn More
Enhancer of Zeste homolog 2 (EZH2) is a methyltransferase that plays an important role in many biological processes through its ability to trimethylate lysine 27 in histone H3. Here, we show that Akt phosphorylates EZH2 at serine 21 and suppresses its methyltransferase activity by impeding EZH2 binding to histone H3, which results in a decrease of lysine 27(More)
TNFalpha has recently emerged as a regulator linking inflammation to cancer pathogenesis, but the detailed cellular and molecular mechanisms underlying this link remain to be elucidated. The tuberous sclerosis 1 (TSC1)/TSC2 tumor suppressor complex serves as a repressor of the mTOR pathway, and disruption of TSC1/TSC2 complex function may contribute to(More)
It has been proposed that an aggressive secondary cancer stem cell population arises from a primary cancer stem cell population through acquisition of additional genetic mutations and drives cancer progression. Overexpression of Polycomb protein EZH2, essential in stem cell self-renewal, has been linked to breast cancer progression. However, critical(More)
The epithelial-mesenchymal transition (EMT) has recently been linked to stem cell phenotype. However, the molecular mechanism underlying EMT and regulation of stemness remains elusive. Here, using genomic approaches, we show that tumour suppressor p53 has a role in regulating both EMT and EMT-associated stem cell properties through transcriptional(More)
We found that the receptor for erythropoietin (EpoR) is coexpressed with human epidermal growth factor receptor-2 (HER2) in a significant percentage of human breast tumor specimens and breast cancer cell lines. Exposure of HER2 and EpoR dual-positive breast cancer cells to recombinant human erythropoietin (rHuEPO) activated cell signaling. Concurrent(More)
Mammalian target of rapamycin (mTOR) regulates various cellular functions, including tumorigenesis, and is inhibited by the tuberous sclerosis 1 (TSC1)-TSC2 complex. Here, we demonstrate that arrest-defective protein 1 (ARD1) physically interacts with, acetylates, and stabilizes TSC2, thereby repressing mTOR activity. The inhibition of mTOR by ARD1 inhibits(More)
Apoptosis is critical for embryonic development, tissue homeostasis, and tumorigenesis and is determined largely by the Bcl-2 family of antiapoptotic and prosurvival regulators. Here, we report that glycogen synthase kinase 3 (GSK-3) was required for Mcl-1 degradation, and we identified a novel mechanism for proteasome-mediated Mcl-1 turnover in which(More)
IkappaB kinase beta (IKKbeta) is involved in tumor development and progression through activation of the nuclear factor (NF)-kappaB pathway. However, the molecular mechanism that regulates IKKbeta degradation remains largely unknown. Here, we show that a Cullin 3 (CUL3)-based ubiquitin ligase, Kelch-like ECH-associated protein 1 (KEAP1), is responsible for(More)
The proinflammatory cytokine TNFalpha is one of the factors that links obesity-derived chronic inflammation with insulin resistance. Activation of mTOR signaling pathway has been found to suppress insulin sensitivity through serine phosphorylation and the inhibition of IRS1 by mTOR and its downstream effector, S6K1. It remains elusive that whether the mTOR(More)
Epidermal growth factor receptor (EGFR) can undergo post-translational modifications, including phosphorylation, glycosylation and ubiquitylation, leading to diverse physiological consequences and modulation of its biological activity. There is increasing evidence that methylation may parallel other post-translational modifications in the regulation of(More)