Learn More
1. The aim of the present study was to investigate the effect of hydrogen sulphide (H(2)S) on cobalt chloride (CoCl(2))-induced injury in H9c2 embryonic rat cardiac cells. 2. After 36 h incubation in the presence of 600 micromol/L CoCl(2), reduced cell viability of H9c2 cells was observed, as well as the induction of apoptosis. In addition, CoCl(2) (600(More)
1. Hydrogen sulphide (H(2)S) is a well-known cytotoxic gas. Recently, H(2)S has been shown to protect neurons against oxidative stress caused by glutamate, peroxynitrite and HOCl. Considerably lower H(2)S levels have been reported in the brain of Alzheimer's disease (AD) patients with accumulation of beta-amyloid (A beta). 2. The aim of present study was to(More)
Hydrogen sulfide (H2S) has been shown to exert cardioprotective effects. However, the roles of extracellular signal-regulated protein kinases 1/2 (ERK1/2) in H2S-induced cardioprotection have not been completely elucidated. In this study, cobalt chloride (CoCl2), a chemical hypoxia mimetic agent, was applied to treat H9c2 cells to establish a chemical(More)
1. Increasing evidence indicates that hydrogen sulphide (H₂S) may serve as an important biological cytoprotective agent. Heat shock protein (Hsp) 90 can attenuate stress-induced injury. However, whether Hsp90 mediates the cytoprotective effect of H₂S against chemical hypoxia-induced injury in PC12 cells is not known. 2. In the present study, CoCl₂ (a(More)
1. Asymmetric dimethylarginine (ADMA) is a well-known endogenous nitric oxide synthase (NOS) inhibitor. Although it has been shown to be a novel risk marker in cardiovascular medicine and chronic kidney disease, we speculated that in some states associated with excess of nitric oxide (NO), such as 1-methyl-4-phenylpyridinium ion (MPP(+))-induced neuronal(More)
Hydrogen sulfide (H2S) is a critical signaling molecule that regulates many physiological and/or pathological processes. Modulation of H2S levels could have potential therapeutic value. In this work, we report the rational design, synthesis, and biological evaluation of a class of phosphonamidothioate-based H2S-releasing agents (i.e., H2S donors). A novel(More)
The roles of hydrogen sulfide (H2S) and endoplasmic reticulum (ER) stress in doxorubicin (DOX)-induced cardiotoxicity are still unclear. This study aimed to dissect the hypothesis that H2S could protect H9c2 cells against DOX-induced cardiotoxicity by inhibiting ER stress. Our results showed that exposure of H9c2 cells to DOX significantly inhibited the(More)
We study the power of uncontrolled random molecular movement in the nubot model of self-assembly. The nubot model is an asynchronous nondeterministic cellular automaton augmented with rigid-body movement rules (push/pull, deterministically and programmatically applied to specific monomers) and random agitations (nonde-terministically applied to every(More)
Hydrogen sulfide (H(2)S) has been shown to act as a neuroprotectant and antioxidant. Numerous studies have demonstrated that exposure to formaldehyde (FA) causes neuronal damage and that oxidative stress is one of the most critical effects of FA exposure. Accumulation of FA is involved in the pathogenesis of Alzheimer's disease (AD). The aim of present(More)
The present study investigated whether there is an interaction between reactive oxygen species (ROS) and p38 mitogen-activated protein kinase (MAPK) during chemical hypoxia-induced injury in PC12 cells. The results of the present study showed that cobalt chloride (CoCl₂), a chemical hypoxia agent, markedly induced ROS generation and phosphorylation of(More)