Chun-Nan Wu

  • Citations Per Year
Learn More
Nanocellulose/montmorillonite (MTM) composite films were prepared from 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-oxidized cellulose nanofibrils (TOCNs) with an aspect ratio of >200 dispersed in water with MTM nanoplatelets. The composite films were transparent and flexible and showed ultrahigh mechanical and oxygen barrier properties through the(More)
Controlling the assembly modes of different crystalline nanoparticles in composites is important for the expression of specific characteristics of the assembled structures. We report a unique procedure for increasing water contact angles (CAs) of composite film surfaces via the assembly of two different hydrophilic components, nanocellulose fibrils and(More)
A highly tough and transparent film material was prepared from synthetic saponite (SPN) nanoplatelets of low aspect ratios and nanofibrillar cellulose. The nanofibrillar cellulose was chemically modified by topological surface oxidation using 2,2,6,6-tetramethylpiperidinyl-1-oxyl (TEMPO) as a catalyst. Both synthetic SPN nanoplatelets and TEMPO-oxidized(More)
Transparent and flexible cellulose-clay (montmorillonite, MTM) nanocomposite films are prepared from cellulose/LiOH/urea solutions. The results show that the composites possess intercalated nanolayered structures. Almost no Na ions are present in MTM, probably because they are substituted by Li ions. The nanocomposite films possess high mechanical strength(More)
  • 1