Chun Kit Kwok

Learn More
RNA structure has critical roles in processes ranging from ligand sensing to the regulation of translation, polyadenylation and splicing. However, a lack of genome-wide in vivo RNA structural data has limited our understanding of how RNA structure regulates gene expression in living cells. Here we present a high-throughput, genome-wide in vivo RNA structure(More)
RNA structure plays important roles in diverse biological processes. However, the structures of all but the few most abundant RNAs are presently unknown in vivo. Here we introduce DMS/SHAPE-LMPCR to query the in vivo structures of low-abundance transcripts. DMS/SHAPE-LMPCR achieves attomole sensitivity, a 100,000-fold improvement over conventional methods.(More)
Guanine quadruplex structures (GQSs) exhibit unique spectroscopic features, including an inverse melting profile at 295 nm, distinctive circular dichroism features, and intrinsic fluorescence. Herein, we investigate effects of loop sequence and loop length on the intrinsic fluorescence of 13 DNA GQSs. We report label-free fluorescence enhancements upon(More)
RNA folds into intricate structures that enable its pivotal roles in biology, ranging from regulation of gene expression to ligand sensing and enzymatic functions. Therefore, elucidating RNA structure can provide profound insights into living systems. A recent marriage between in vivo RNA structure probing and next-generation sequencing (NGS) has(More)
MOTIVATION RNAs fold into complex structures that are integral to the diverse mechanisms underlying RNA regulation of gene expression. Recent development of transcriptome-wide RNA structure profiling through the application of structure-probing enzymes or chemicals combined with high-throughput sequencing has opened a new field that greatly expands the(More)
Anthropogenic pollutants and climate change are major threats to coral reefs today. Yet interactions between chemical and thermal perturbations have not been fully explored in reef studies. Here, we present the single and combined effects of copper (Cu) with thermal stress on five early life-history stages/processes (fertilization, larval mortality,(More)
Dose–response experiments were conducted to investigate the effects of ammonia nitrogen (NH3/NH4 +) and orthophosphate (PO4 3−) on four stages of larval development in Platygyra acuta, including fertilization, embryonic development and the survival, motility, and settlement of planula larvae. Fertilization success was reduced significantly under 200 μM(More)
A proton chemical shift prediction scheme for B-DNA duplexes containing a T·T mismatch has been established. The scheme employs a set of T·T mismatch triplet chemical shift values, 5'- and 3'-correction factors extracted from reference sequences, and also the B-DNA chemical shift values predicted by Altona et al. The prediction scheme was tested by eight(More)
Six species of freshwater fish collected from 10 fishponds in Shunde and Zhongshan, China, four species of marine fishes collected from different mariculture farms [four in Hong Kong (Tung Lung Chau, Ma Wan, Cheung Chau and Kat O) and two in mainland China (Daya Bay and Shenzhen)] together with feed (both trash fish and commercial pellets) and sediment were(More)
The G-quadruplex (G4) is a non-canonical nucleic acid structure which regulates important cellular processes. RNA G4s have recently been shown to exist in human cells and be biologically significant. Described herein is a new approach to detect and map RNA G4s in cellular transcripts. This method exploits the specific control of RNA G4-cation and RNA(More)