Chun Jiang

Ningren Cui28
Weiwei Zhong13
Junda Su13
28Ningren Cui
13Weiwei Zhong
13Junda Su
Learn More
Rett syndrome caused by mutations in methyl-CpG-binding protein 2 (Mecp2) gene shows abnormalities in autonomic functions in which brain stem norepinephrinergic systems play an important role. Here we present systematic comparisons of intrinsic membrane properties of locus coeruleus (LC) neurons between Mecp2(-/Y) and wild-type (WT) mice. Whole cell current(More)
CO2 chemoreception may be related to modulation of inward rectifier K+ channels (Kir channels) in brainstem neurons. Kir4.1 is expressed predominantly in the brainstem and inhibited during hypercapnia. Although the homomeric Kir4.1 only responds to severe intracellular acidification, coexpression of Kir4.1 with Kir5.1 greatly enhances channel sensitivities(More)
People with Rett syndrome (RTT) have breathing instability in addition to other neuropathological manifestations. The breathing disturbances contribute to the high incidence of unexplained death and abnormal brain development. However, the cellular mechanisms underlying the breathing abnormalities remain unclear. To test the hypothesis that the central(More)
Kir1.1 channel regulates membrane potential and K+ secretion in renal tubular cells. This channel is gated by intracellular protons, in which a lysine residue (Lys80) plays a critical role. Mutation of the Lys80 to a methionine (K80M) disrupts pH-dependent channel gating. To understand how an individual subunit in a tetrameric channel is involved in(More)
The inward rectifier K(+) channels function in the regulation of myocardial rhythmicity, vascular tones, epithelial transport, and neuronal excitability. Most of these channels are gated by pH. It is now known that the gating process involves a large number of protein domains and amino acid residues in both N- and C-termini of the channel protein.(More)
G protein-coupled inward rectifier K(+) (GIRK) channels regulate cellular excitability and neurotransmission. The GIRK channels are activated by a number of inhibitory neurotransmitters through the G protein betagamma subunit (G(betagamma)) after activation of G protein-coupled receptors and inhibited by several excitatory neurotransmitters through(More)
CO(2) is an important metabolic product whose concentrations are constantly monitored by CO(2) chemoreceptors. However, the high systemic CO(2) sensitivity may not be achieved by the CO(2) chemoreceptors without neuronal network processes. To show modulation of network properties during hypercapnia, we studied brainstem neurons dissociated from embryonic(More)
CO2 central chemoreceptors play an important role in cardiorespiratory control. They are highly sensitive to P(CO2) in a broad range. These two sensing properties seem paradoxical as none of the known pH-sensing molecules can achieve both. Here we show that cultured neuronal networks are likely to solve the sensitivity versus spectrum problem with parallel(More)
Rett syndrome is an autism spectrum disorder resulting from defects in the gene encoding the methyl-CpG-binding protein 2 (MeCP2). Deficiency of the Mecp2 gene causes abnormalities in several systems in the brain, especially the norepinephrinergic and GABAergic systems. The norepinephrinergic neurons in the locus coeruleus (LC) modulate a variety of neurons(More)
Catecholaminergic neurons in the locus coeruleus (LC) play a role in the ventilatory response to hypercapnia. Here, we show evidence for the involvement of transient receptor potential (TRP) channels. We found that the input resistance was reduced during an exposure to 8% CO(2) in ~35% LC neurons in mouse brain slices, accompanied by depolarization and(More)