Learn More
Oriented cell division is an integral part of pattern development in processes ranging from asymmetric segregation of cell-fate determinants to the shaping of tissues. Despite proposals that it has an important function in tissue elongation, the mechanisms regulating division orientation have been little studied outside of the invertebrates Caenorhabditis(More)
The lobula giant motion detector (LGMD) is a wide-field bilateral visual interneuron in North American locusts that acts as an angular threshold detector during the approach of a solid square along a trajectory perpendicular to the long axis of the animal (Gabbiani et al., 1999a). We investigated the dependence of this angular threshold computation on(More)
Multiplicative operations and invariance of neuronal responses are thought to play important roles in the processing of neural information in many sensory systems. Yet the biophysical mechanisms that underlie both multiplication and invariance of neuronal responses in vivo, either at the single cell or at the network level, remain to a large extent unknown.(More)
Reverse-phi motion is the illusory reversal of perceived direction of movement when the stimulus contrast is reversed in successive frames. Livingstone, Tsao, and Conway (2000) showed that direction-selective cells in striate cortex of the alert macaque monkey showed reversed excitatory and inhibitory regions when two different contrast bars were flashed(More)
The basic requirement for direction selectivity is a nonlinear interaction between two different inputs in space-time. In some models, the interaction is hypothesized to occur between excitation and inhibition of the shunting type in the neuron's dendritic tree. How can the required spatial specificity be acquired in an unsupervised manner? We here propose(More)
  • 1