Learn More
We introduce a method to determine the retinal nerve fiber layer (RNFL) thickness in OCT images based on anisotropic noise suppression and deformable splines. Spectral-Domain Optical Coherence Tomography (SDOCT) data was acquired at 29 kHz A-line rate with a depth resolution of 2.6 mum and a depth range of 1.6 mm. Areas of 9.6x6.4 mm2 and 6.4x6.4 mm2 were(More)
We describe a novel microscopy technique for quantitative phase-contrast imaging of a transparent specimen. The technique is based on depth-resolved phase information provided by common path spectral-domain optical coherence tomography and can measure minute phase variations caused by changes in refractive index and thickness inside the specimen. We(More)
We report noncontact optical measurement of fast transient structural changes in the crustacean nerve during action potential propagation without the need for exogenous chemicals or reflection coatings. The technique, spectral domain optical coherence tomography, provides real-time cross-sectional images of the nerve with micron-scale resolution to select a(More)
While multiphoton microscopy (MPM) has been performed with a wide range of excitation wavelengths, fluorescence emission has been limited to the visible spectrum. We introduce a paradigm for MPM of near-infrared (NIR) fluorescent molecular probes via nonlinear excitation at 1550 nm. This all-NIR system expands the range of available MPM fluorophores,(More)
Quantitative measurement of diffusive and directional processes of intracellular structures is not only critical in understanding cell mechanics and functions, but also has many applications, such as investigation of cellular responses to therapeutic agents. We introduce a label-free optical technique that allows non-perturbative characterization of(More)
During the last few years, fluorescence activated cell sorter has played an important role in a variety of biological investigations as well as clinical diagnostics. However, the conventional fluorescence activated cell sorter has several limitations, such as large size, large sample volumes required for operation, and high cost. In this paper, we present a(More)
We present a multi-contrast microscope based on color-coded illumination and computation. A programmable three-color light-emitting diode (LED) array illuminates a specimen, in which each color corresponds to a different illumination angle. A single color image sensor records light transmitted through the specimen, and images at each color channel are then(More)
We report on the measurement of the fringe-to-substrate phase error in our Nanoruler system. This system utilizes scanning beam interference lithography to pattern and measure large-area, nanometer-accuracy gratings that are appropriate for semiconductor and integrated opto-electronic metrology. We present the Nanonruler's metrology system that is based on(More)
We describe simultaneous quantitative phase contrast and multiphoton fluorescence imaging by combined spectral-domain optical coherence phase and multiphoton microscopy. The instrument employs two light sources for efficient optical coherence microscopic and multiphoton imaging and can generate structural and functional images of transparent specimens in(More)
Two-photon (2P) optical properties of cyanine dyes were evaluated using a 2P fluorescence spectrophotometer with 1.55 μm excitation. We report the 2P characteristics of common NIR polymethine dyes, including their 2P action cross sections and the 2P excited fluorescence lifetime. One of the dyes, DTTC, showed the highest 2P action cross-section (∼103 ± 19(More)