Learn More
We report an improved draft nucleotide sequence of the 2.3-gigabase genome of maize, an important crop plant and model for biological research. Over 32,000 genes were predicted, of which 99.8% were placed on reference chromosomes. Nearly 85% of the genome is composed of hundreds of families of transposable elements, dispersed nonuniformly across the genome.(More)
Oryza (23 species; 10 genome types) contains the world's most important food crop - rice. Although the rice genome serves as an essential tool for biological research, little is known about the evolution of the other Oryza genome types. They contain a historical record of genomic changes that led to diversification of this genus around the world as well as(More)
The cultivation of rice in Africa dates back more than 3,000 years. Interestingly, African rice is not of the same origin as Asian rice (Oryza sativa L.) but rather is an entirely different species (i.e., Oryza glaberrima Steud.). Here we present a high-quality assembly and annotation of the O. glaberrima genome and detailed analyses of its evolutionary(More)
Retroposition is widely found to play essential roles in origination of new mammalian and other animal genes. However, the scarcity of retrogenes in plants has led to the assumption that plant genomes rarely evolve new gene duplicates by retroposition, despite abundant retrotransposons in plants and a reported long terminal repeat (LTR)(More)
Anthocyanin is a major pigment in vegetative and floral organs of most plants and plays an important role in plant evolution. The anthocyanin regulatory genes are responsible for regulating transcription of genes in the anthocyanin synthetic pathway. To assess evolutionary significance of sequence variation and evaluate the phylogenetic utility of an(More)
Gene duplication is an important mechanism for the origination of functional novelties in organisms. We performed a comparative genome analysis to systematically estimate recent lineage specific gene duplication events in Arabidopsis thaliana and further investigate whether and how these new duplicate genes (NDGs) play a functional role in the evolution and(More)
PEX11 gene family has been shown to be involved in peroxisome biogenesis but very little is known about this gene family in rice. Here we show that five putative PEX11 genes (OsPEX11-1-5) present in rice genome and each contain three conserved motifs. The PEX11 sequences from rice and other species can be classified into three major groups. Among the five(More)
Tandem gene duplication is one of the major gene duplication mechanisms in eukaryotes, as illustrated by the prevalence of gene family clusters. Tandem duplicated paralogs usually share the same regulatory element, and as a consequence, they are likely to perform similar biological functions. Here, we provide an example of a newly evolved tandem duplicate(More)
SUMMARY gKaKs is a codon-based genome-level Ka/Ks computation pipeline developed and based on programs from four widely used packages: BLAT, BLASTALL (including bl2seq, formatdb and fastacmd), PAML (including codeml and yn00) and KaKs_Calculator (including 10 substitution rate estimation methods). gKaKs can automatically detect and eliminate frameshift(More)
Inheritable epigenetic mutations (epimutations) can contribute to transmittable phenotypic variation. Thus, epimutations can be subject to natural selection and impact the fitness and evolution of organisms. Based on the framework of the modified Tajima's D test for DNA mutations, we developed a neutrality test with the statistic "D(m)" to detect selection(More)