Chuan-Yun Li

Learn More
High-throughput experimental technologies often identify dozens to hundreds of genes related to, or changed in, a biological or pathological process. From these genes one wants to identify biological pathways that may be involved and diseases that may be implicated. Here, we report a web server, KOBAS 2.0, which annotates an input set of genes with putative(More)
Drug addiction is a serious worldwide problem with strong genetic and environmental influences. Different technologies have revealed a variety of genes and pathways underlying addiction; however, each individual technology can be biased and incomplete. We integrated 2,343 items of evidence from peer-reviewed publications between 1976 and 2006 linking genes(More)
The BioMart Community Portal ( is a community-driven effort to provide a unified interface to biomedical databases that are distributed worldwide. The portal provides access to numerous database projects supported by 30 scientific organizations. It includes over 800 different biological datasets spanning genomics, proteomics, model(More)
Tinkering with pre-existing genes has long been known as a major way to create new genes. Recently, however, motherless protein-coding genes have been found to have emerged de novo from ancestral non-coding DNAs. How these genes originated is not well addressed to date. Here we identified 24 hominoid-specific de novo protein-coding genes with precise(More)
The use of oseltamivir, widely stockpiled as one of the drugs for use in a possible avian influenza pandemic, has been reported to be associated with neuropsychiatric disorders and severe skin reactions, primarily in Japan. Here we identified a nonsynonymous SNP (single nucleotide polymorphism) in dbSNP database, R41Q, near the enzymatic active site of(More)
To understand whether any human-specific new genes may be associated with human brain functions, we computationally screened the genetic vulnerable factors identified through Genome-Wide Association Studies and linkage analyses of nicotine addiction and found one human-specific de novo protein-coding gene, FLJ33706 (alternative gene symbol C20orf203).(More)
Genome-wide association (GWA) can elucidate molecular genetic bases for human individual differences in complex phenotypes that include vulnerability to addiction. Here, we review (a) evidence that supports polygenic models with (at least) modest heterogeneity for the genetic architectures of addiction and several related phenotypes; (b) technical and(More)
Family, adoption and twin data each support substantial heritability for addictions. Most of this heritable influence is not substance-specific. The overlapping genetic vulnerability for developing dependence on a variety of addictive substances suggests large roles for "higher order" pharamacogenomics in addiction molecular genetics. We and others have now(More)
Human cell adhesion molecules (CAMs) are essential for proper development, modulation, and maintenance of interactions between cells and cell-to-cell (and matrix-to-cell) communication about these interactions. Despite the differential functional significance of these roles, there have been surprisingly few systematic studies to enumerate the universe of(More)
The discovery of functional cannabinoid receptors 2 (CB2Rs) in brain suggests a potential new therapeutic target for neurological and psychiatric disorders. However, recent findings in experimental animals appear controversial. Here we report that there are significant species differences in CB2R mRNA splicing and expression, protein sequences, and receptor(More)