Learn More
An anatomical and electrophysiological study of Drosophila mutants has been made to determine the effect of altered electrical activity on the development and maintenance of larval neuromuscular junctions. We examined motor axon terminals of (1) hyperexcitable mutants Shaker (Sh), ether a go-go (eag), Hyperkinetic (Hk), and Duplication of para+ (Dp para+);(More)
The innervation of ventral longitudinal abdominal muscles (muscles 6, 7, 12, and 13) of third-instar Drosophila larvae was investigated with Nomarski, confocal, and electron microscopy to define the ultrastructural features of synapse-bearing terminals. As shown by previous workers, muscles 6 and 7 receive in most abdominal segments "Type I" endings, which(More)
Morphological and physiological characteristics of the two major motor axons supplying the commonly studied ventral longitudinal muscle fibers (6 and 7) of third-instar Drosophila melanogaster larvae were investigated. The innervating terminals of the two motor axons differ in the size of their synapse-bearing varicosities. The terminal with the larger(More)
Activity-dependent synaptic plasticity has been implicated in the refinement and modification of neural circuits during development and learning. Previous studies show that activity-induced facilitation and potentiation are disrupted at larval neuromuscular junctions in the memory mutants dunce (dnc) and rutabaga (rut) of Drosophila. The diminished(More)
A mutation of Drosophila, slowpoke (slo), specifically abolishes a Ca2+-dependent K+ current, IC, from dorsal longitudinal flight muscles of adult flies. Other K+ currents remain normal, providing evidence that IC is mediated by a molecularly distinguishable set of channels. The pharmacological properties of IC are similar to those of Ca2+-dependent(More)
Interleukin 17 (IL-17)-producing helper T cells (T(H)17 cells) are often present at the sites of tissue inflammation in autoimmune diseases, which has led to the conclusion that T(H)17 cells are main drivers of autoimmune tissue injury. However, not all T(H)17 cells are pathogenic; in fact, T(H)17 cells generated with transforming growth factor-β1 (TGF-β1)(More)
Synaptic transmission was examined in Drosophila mutants deficient in memory function. These mutants, dunce and rutabaga, are defective in different steps of the cyclic adenosine 3',5'-monophosphate (cAMP) cascade. In both dunce and rutabaga larvae, voltage-clamp analysis of neuromuscular transmission revealed impaired synaptic facilitation and post-tetanic(More)
Genetic approaches in Drosophila have advanced our understanding of the molecular mechanisms of different forms of learning, including habituation, but relevant neural components have not been explored. We show that a well defined neural circuit that underlies an escape response can be habituated, providing for the first time excellent opportunities for(More)
Due to the lack of stability and reliability in peer-to-peer networks, multimedia streaming over peer-to-peer networks represents several fundamental engineering challenges. First, multimedia streaming sessions need to be resilient to volatile network dynamics and node departures that are characteristic in peer-to-peer networks. Second, they need to take(More)
Despite their importance, the molecular circuits that control the differentiation of naive T cells remain largely unknown. Recent studies that reconstructed regulatory networks in mammalian cells have focused on short-term responses and relied on perturbation-based approaches that cannot be readily applied to primary T cells. Here we combine transcriptional(More)