Learn More
Protein-protein docking algorithms provide a means to elucidate structural details for presently unknown complexes. Here, we present and evaluate a new method to predict protein-protein complexes from the coordinates of the unbound monomer components. The method employs a low-resolution, rigid-body, Monte Carlo search followed by simultaneous optimization(More)
Computational protein-protein docking methods currently can create models with atomic accuracy for protein complexes provided that the conformational changes upon association are restricted to the side chains. However, it remains very challenging to account for backbone conformational changes during docking, and most current methods inherently keep monomer(More)
We describe predictions made using the Rosetta structure prediction methodology for both template-based modeling and free modeling categories in the Seventh Critical Assessment of Techniques for Protein Structure Prediction. For the first time, aggressive sampling and all-atom refinement could be carried out for the majority of targets, an advance enabled(More)
A challenge in protein-protein docking is to account for the conformational changes in the monomers that occur upon binding. The RosettaDock method, which incorporates sidechain flexibility but keeps the backbone fixed, was found in previous CAPRI rounds (4 and 5) to generate docking models with atomic accuracy, provided that conformational changes were(More)
Cysteine is the most intrinsically nucleophilic amino acid in proteins, where its reactivity is tuned to perform diverse biochemical functions. The absence of a consensus sequence that defines functional cysteines in proteins has hindered their discovery and characterization. Here we describe a proteomics method to profile quantitatively the intrinsic(More)
The prediction of the structures and interactions of biological macromolecules at the atomic level and the design of new structures and interactions are critical tests of our understanding of the interatomic interactions that underlie molecular biology. Equally important, the capability to accurately predict and design macromolecular structures and(More)
Success in high-resolution protein-protein docking requires accurate modeling of side-chain conformations at the interface. Most current methods either leave side chains fixed in the conformations observed in the unbound protein structures or allow the side chains to sample a set of discrete rotamer conformations. Here we describe a rapid and efficient(More)
A multi-user Virtual World has been implemented combining a flexible-object simulator with a multisensory user interface, including hand motion and gestures, speech input and output, sound output, and 3-D stereoscopic graphics with head-motion parallax. The implementation is based on a distributed client/server architecture with a centralized Dialogue(More)
The reversible thioester linkage of palmitic acid on cysteines, known as protein S-palmitoylation, facilitates the membrane association and proper subcellular localization of proteins. Here we report the metabolic incorporation of the palmitic acid analog 17-octadecynoic acid (17-ODYA) in combination with stable-isotope labeling with amino acids in cell(More)
National Institutes of Health (NIH)-sponsored screening centers provide academic researchers with a special opportunity to pursue small-molecule probes for protein targets that are outside the current interest of, or beyond the standard technologies employed by, the pharmaceutical industry. Here, we describe the outcome of an inhibitor screen for one such(More)