Learn More
In this paper, we propose an ordinal hyperplane ranking algorithm called OHRank, which estimates human ages via facial images. The design of the algorithm is based on the relative order information among the age labels in a database. Each ordinal hyperplane separates all the facial images into two groups according to the relative order, and a cost-sensitive(More)
Recently, promising results have been shown on face recognition researches. However, face recognition and retrieval across age is still challenging. Unlike prior methods using complex models with strong parametric assumptions to model the aging process, we use a data-driven method to address this problem. We propose a novel coding framework called Cross-Age(More)
Approximate nearest neighbor search is an efficient strategy for large-scale image retrieval. Encouraged by the recent advances in convolutional neural networks (CNNs), we propose an effective deep learning framework to generate binary hash codes for fast image retrieval. Our idea is that when the data labels are available, binary codes can be learned by(More)
ÐIn this paper, we propose a new method, the RANSAC-based DARCES method, which can solve the partially overlapping 3D registration problem without any initial estimation. For the noiseless case, the basic algorithm of our method can guarantee that the solution it finds is the true one, and its time complexity can be shown to be relatively low. An extra(More)
Spectral clustering makes use of spectral-graph structure of an affinity matrix to partition data into disjoint meaningful groups. Because of its elegance, efficiency and good performance, spectral clustering has become one of the most popular clustering methods. Traditional spectral clustering assumes a single affinity matrix. However, in many(More)
This paper proposes an adaptive learning method for tracking targets across multiple cameras with disjoint views. Two visual cues are usually employed for tracking targets across cameras: spatio-temporal cue and appearance cue. To learn the relationships among cameras, traditional methods used batch-learning procedures or hand-labeled correspondence, which(More)
In our daily life, it is much easier to distinguish which person is elder between two persons than how old a person is. When inferring a person’s age, we may compare his or her face with many people whose ages are known, resulting in a series of comparative results, and then we conjecture the age based on the comparisons. This process involves numerous(More)
Cast shadows induced by moving objects often cause serious problems to many vision applications. We present in this paper an online statistical learning approach to model the background appearance variations under cast shadows. Based on the bi-illuminant (i.e. direct light sources and ambient illumination) dichromatic reflection model, we derive(More)
This paper introduces an approach for face cognizance throughout age and in addition a dataset containing variations of age in the wild. We use a data-driven system to deal with the go-age face realization challenge, known as cross-age reference coding (CARC). By using leveraging a colossal-scale snapshot dataset freely available on the web as a reference(More)