Learn More
The superimposable dinucleotide fold domains of MetRS, GlnRS and TyrRS define structurally equivalent amino acids which have been used to constrain the sequence alignments of the 10 class I aminoacyl-tRNA synthetases (aaRS). The conservation of those residues which have been shown to be critical in some aaRS enables to predict their location and function in(More)
AMPA receptors mediate fast excitatory neurotransmission by converting chemical signals into electrical signals, and thus it is important to understand the relationship between their chemical biology and their function. We used single-molecule fluorescence resonance energy transfer to examine the conformations explored by the agonist-binding domain of the(More)
Two maximum likelihood estimation (MLE) methods were developed for optimizing the analysis of single-molecule trajectories that include phenomena such as experimental noise, photoblinking, photobleaching, and translation or rotation out of the collection plane. In particular, short, single-molecule trajectories with photoblinking were studied, and our(More)
Single-molecule fluorescence resonance energy transfer (SMFRET) was used to study the interaction of a 25-nucleotide (nt) DNA aptamer with its binding target, vascular endothelial growth factor (VEGF). Conformational dynamics of the aptamer were studied in the absence of VEGF in order to characterize fluctuations in the unbound nucleic acid. SMFRET(More)
Reverse transcription of the HIV-1 genome involves several nucleic acid rearrangement steps that are catalyzed (chaperoned) by the nucleocapsid protein (NC), including the annealing of the transactivation response region (TAR) RNA of the genome to the complementary sequence (TAR DNA) in minus-strand strong-stop DNA. It has been extremely challenging to(More)
Single-molecule spectroscopy was used to examine how a model inhibitor of HIV-1, argininamide, modulates the nucleic acid chaperone activity of the nucleocapsid protein (NC) in the minus-strand transfer step of HIV-1 reverse transcription, in vitro. In minus-strand transfer, the transactivation response region (TAR) RNA of the genome is annealed to the(More)
We have evaluated the effect of varying three key parameters for Fluorescence Correlation Spectroscopy analysis, first in the context of a one species/one environment system, and then in a complex system composed of two species, or conversely, two environments. We establish experimentally appropriate settings for the (1) minimum lag time, (2) maximum lag(More)
Time-resolved single-molecule fluorescence spectroscopy was used to study the human T-cell lymphotropic virus type 1 (HTLV-1) nucleocapsid protein (NC) chaperone activity compared to that of the human immunodeficiency virus type 1 (HIV-1) NC protein. HTLV-1 NC contains two zinc fingers, each having a CCHC binding motif similar to HIV-1 NC. HIV-1 NC is(More)
The minus-strand transfer step of HIV-1 reverse transcription is chaperoned by the nucleocapsid protein (NC), which has been shown to facilitate the annealing between the transactivation response element (TAR) RNA and complementary TAR DNA stem-loop structures. In this work, potential intermediates in the mechanism of NC-chaperoned TAR DNA/TAR RNA annealing(More)
In HIV-1 reverse transcription, the nucleocapsid protein, NC, induces secondary structure fluctuations in specific DNA and RNA hairpins. Time-resolved single-molecule fluorescence resonance energy transfer was used to study NC chaperoned opening of DNA hairpins over a broader range of conditions and in more depth than in previous studies. The experiments(More)