Christos Zerefos

Learn More
The prediction of ground level ozone for air quality monitoring and assessment is simulated through an integrated system of gridded models (meteorological, photochemical), where the atmosphere is represented with a three-dimensional grid that may include thousands of grid cells. The continuity equation solved by the Photochemical Air Quality Model (PAQM)(More)
Climate change has the potential to influence many aspects of wildfire behavior and risk. During the last decade, Greece has experienced large-scale wildfire phenomena with unprecedented fire behavior and impacts. In this study, thousands of wildfire events were simulated with the Minimum Travel Time (MTT) fire growth algorithm (called Randig) and resulted(More)
  • Ivar S A Isaksen, Terje K Berntsen, Stig B Dalsøren, Kostas Eleftheratos, Yvan Orsolini, Bjørg Rognerud +4 others
  • 2014
Ozone and methane are chemically active climate-forcing agents affected by climate–chemistry interactions in the atmosphere. Key chemical reactions and processes affecting ozone and methane are presented. It is shown that climate-chemistry interactions have a significant impact on the two compounds. Ozone, which is a secondary compound in the atmosphere,(More)
A grid-oriented Biogenic Emission Model (BEM) has been developed to calculate Non-Methane Volatile Organic Compound (NMVOC) emissions from vegetation in high spatial and temporal resolutions. The model allows the emissions calculation for any modeling domain covering Europe on the basis of: 1) the U.S. Geological Survey 1-km resolution land-use database, 2)(More)
  • 1