Christos Kotakis

Learn More
Polyamines (PAs) are ubiquitous aliphatic amines important and, in many cases, essential for plant growth, abiotic stress response, and tolerance. Here we provide evidence for genetic reprogramming of PA homeostasis that occurs during the de-etiolation, maturation, and senescence of the primary leaf in Hordeum vulgare (barley). We analyzed expression levels(More)
Expression of exogenous sequences in plants is often suppressed through one of the earliest described RNA silencing pathways, sense post-transcriptional gene silencing (S-PTGS). This type of suppression has made significant contributions to our knowledge of the biology of RNA silencing pathways and has important consequences in plant transgenesis(More)
The chlorophyll (Chl)-containing membrane protein complexes from the green alga Scenedesmus obliquus have been isolated from the thylakoid membranes by solubilization with dodecyl-beta-maltoside and fractionation using a sucrose density gradient. The Chl-containing protein fractions were characterized by absorption spectroscopy, tricine SDS PAGE, BN-PAGE,(More)
During the last decade we showed clearly that abiotic stress changes the cellular composition of polyamines, which in turn regulate the photochemical and non-photochemical quenching of the received light energy in the photosynthetic apparatus and that modulate substantially the level of plant tolerance. In the present contribution, we tried to change the(More)
Ars longa, vita brevis -Hippocrates Chloroplasts and mitochondria are genetically semi-autonomous organelles inside the plant cell. These constructions formed after endosymbiosis and keep evolving throughout the history of life. Experimental evidence is provided for active non-coding RNAs (ncRNAs) in these prokaryote-like structures, and a possible(More)
The haptophyte Phaeocystis antarctica and the novel Ross Sea dinoflagellate that hosts kleptoplasts derived from P. antarctica (RSD; R.J. Gast et al., 2006, J. Phycol. 42 233-242) were compared for photosynthetic light harvesting and for oxygen evolution activity. Both chloroplasts and kleptoplasts emit chlorophyll a (Chl a) fluorescence peaking at 683nm(More)
Chloroplast thylakoid membranes contain virtually all components of the energy-converting photosynthetic machinery. Their energized state, driving ATP synthesis, is enabled by the bilayer organization of the membrane. However, their most abundant lipid species is a non-bilayer-forming lipid, monogalactosyl-diacylglycerol; the role of lipid polymorphism in(More)
Plants have substantially invested in RNA silencing as the central defense mechanism to combat nucleotide 'invaders' such as viruses, trasposable elements and transgenes. The quantity and quality of light perceived by a plant is a constant environmental stimulus refining cell homeostasis and RNA silencing mechanism seems not to be an exception In our recent(More)
  • 1