Christos C. Ioannou

Learn More
Determining individual-level interactions that govern highly coordinated motion in animal groups or cellular aggregates has been a long-standing challenge, central to understanding the mechanisms and evolution of collective behavior. Numerous models have been proposed, many of which display realistic-looking dynamics, but nonetheless rely on untested(More)
The spontaneous emergence of pattern formation is ubiquitous in nature, often arising as a collective phenomenon from interactions among a large number of individual constituents or sub-systems. Understanding, and controlling, collective behavior is dependent on determining the low-level dynamical principles from which spatial and temporal patterns emerge;(More)
Social transmission of information is vital for many group-living animals, allowing coordination of motion and effective response to complex environments. Revealing the interaction networks underlying information flow within these groups is a central challenge. Previous work has modeled interactions between individuals based directly on their relative(More)
Avoiding predation is generally seen as the most common explanation for why animals aggregate. However, it remains questionable whether the existing theory provides a complete explanation of the functions of large shoals formation in marine fishes. Here, we consider how well the mechanisms commonly proposed to explain enhanced safety of group living prey(More)
Cannibalism has been shown to be important to the collective motion of mass migratory bands of insects, such as locusts and Mormon crickets. These mobile groups consist of millions of individuals and are highly destructive to vegetation. Individuals move in response to attacks from approaching conspecifics and bite those ahead, resulting in further movement(More)
  • 1