Learn More
Determining individual-level interactions that govern highly coordinated motion in animal groups or cellular aggregates has been a long-standing challenge, central to understanding the mechanisms and evolution of collective behavior. Numerous models have been proposed, many of which display realistic-looking dynamics, but nonetheless rely on untested(More)
The capacity for groups to exhibit collective intelligence is an often-cited advantage of group living. Previous studies have shown that social organisms frequently benefit from pooling imperfect individual estimates. However, in principle, collective intelligence may also emerge from interactions between individuals, rather than from the enhancement of(More)
The spontaneous emergence of pattern formation is ubiquitous in nature, often arising as a collective phenomenon from interactions among a large number of individual constituents or sub-systems. Understanding, and controlling, collective behavior is dependent on determining the low-level dynamical principles from which spatial and temporal patterns emerge;(More)
Conflicting interests among group members are common when making collective decisions, yet failure to achieve consensus can be costly. Under these circumstances individuals may be susceptible to manipulation by a strongly opinionated, or extremist, minority. It has previously been argued, for humans and animals, that social groups containing individuals who(More)
Sexual segregation is widespread throughout the animal kingdom. Although a number of hypotheses have been proposed to account for observed patterns, the generality of the mechanisms remains debated. One possible reason for this is the focus on segregation patterns in large mammals such as ungulates, where the majority of studies are descriptions of a single(More)
Whether individual behavior in social settings correlates with behavior when individuals are alone is a fundamental question in collective behavior. However, evidence for whether behavior correlates across asocial and social settings is mixed, and no study has linked observed trends with underlying mechanisms. Consistent differences between individuals in(More)
Carnivorous Nepenthes pitcher plants capture arthropods with specialized slippery surfaces. The key trapping surface, the pitcher rim (peristome), is highly slippery when wetted by rain, nectar or condensation, but not when dry. As natural selection should favour adaptations that maximize prey intake, the evolution of temporarily inactive traps seems(More)
Movement in animal groups is highly varied and ranges from seemingly disordered motion in swarms to coordinated aligned motion in flocks and schools. These social interactions are often thought to reduce risk from predators, despite a lack of direct evidence. We investigated risk-related selection for collective motion by allowing real predators (bluegill(More)
Social transmission of information is vital for many group-living animals, allowing coordination of motion and effective response to complex environments. Revealing the interaction networks underlying information flow within these groups is a central challenge. Previous work has modeled interactions between individuals based directly on their relative(More)
Predator-prey interactions are vital to the stability of many ecosystems. Yet, few studies have considered how they are mediated due to substantial challenges in quantifying behavior over appropriate temporal and spatial scales. Here, we employ high-resolution sonar imaging to track the motion and interactions among predatory fish and their schooling prey(More)