Christopher W. Whelan

Learn More
Gibbons are small arboreal apes that display an accelerated rate of evolutionary chromosomal rearrangement and occupy a key node in the primate phylogeny between Old World monkeys and great apes. Here we present the assembly and analysis of a northern white-cheeked gibbon (Nomascus leucogenys) genome. We describe the propensity for a gibbon-specific(More)
Chromosome rearrangements in small apes are up to 20 times more frequent than in most mammals. Because of their complexity, the full extent of chromosome evolution in these hominoids is not yet fully documented. However, previous work with array painting, BAC-FISH, and selective sequencing in two of the four karyomorphs has shown that high-resolution(More)
Disruptive, damaging ultra-rare variants in highly constrained genes are enriched in individuals with neurodevelopmental disorders. In the general population, this class of variants was associated with a decrease in years of education (YOE). This effect was stronger among highly brain-expressed genes and explained more YOE variance than pathogenic copy(More)
The design of novel antimicrobial peptides (AMPs) is an important problem given the rise of drug-resistant bacteria. However, the large size of the sequence search space, combined with the time required to experimentally test or simulate AMPs at the molecular level makes computational approaches based on sequence analysis attractive. We propose a method for(More)
The mechanism for generating double minutes chromosomes (dmin) and homogeneously staining regions (hsr) in cancer is still poorly understood. Through an integrated approach combining next-generation sequencing, single nucleotide polymorphism array, fluorescent in situ hybridization and polymerase chain reaction-based techniques, we inferred the fine(More)
The detection of genomic structural variations (SV) remains a difficult challenge in analyzing sequencing data, and the growing size and number of sequenced genomes have rendered SV detection a bona fide big data problem. MapReduce is a proven, scalable solution for distributed computing on huge data sets. We describe a conceptual framework for SV detection(More)
Gene amplification is relatively common in tumors. In certain subtypes of sarcoma, it often occurs in the form of ring and/or giant rod-shaped marker (RGM) chromosomes whose mitotic stability is frequently rescued by ectopic novel centromeres (neocentromeres). Little is known about the origin and structure of these RGM chromosomes, including how they arise,(More)
  • 1