Christopher T. Workman

Learn More
Systematic gene expression analyses provide comprehensive information about the transcriptional response to different environmental and developmental conditions. With enough gene expression data points, computational biologists may eventually generate predictive computer models of transcription regulation. Such models will require computational(More)
MOTIVATION Whole genome shotgun sequencing strategies generate sequence data prior to the application of assembly methodologies that result in contiguous sequence. Sequence reads can be employed to indicate regions of conservation between closely related species for which only one genome has been assembled. Consequently, by using pairwise sequence(More)
enoLOGOS is a web-based tool that generates sequence logos from various input sources. Sequence logos have become a popular way to graphically represent DNA and amino acid sequence patterns from a set of aligned sequences. Each position of the alignment is represented by a column of stacked symbols with its total height reflecting the information content in(More)
Aberrant organ development is associated with a wide spectrum of disorders, from schizophrenia to congenital heart disease, but systems-level insight into the underlying processes is very limited. Using heart morphogenesis as general model for dissecting the functional architecture of organ development, we combined detailed phenotype information from(More)
Chromatin immunoprecipitation (ChIP-chip) experiments enable capturing physical interactions between regulatory proteins and DNA in vivo. However, measurement of chromatin binding alone is not sufficient to detect regulatory interactions. A detected binding event may not be biologically relevant, or a known regulatory interaction might not be observed under(More)
GenePublisher, a system for automatic analysis of data from DNA microarray experiments, has been implemented with a web interface at Raw data are uploaded to the server together with a specification of the data. The server performs normalization, statistical analysis and visualization of the data. The results(More)
BACKGROUND Characterization of cellular growth is central to understanding living systems. Here, we applied a three-factor design to study the relationship between specific growth rate and genome-wide gene expression in 36 steady-state chemostat cultures of Saccharomyces cerevisiae. The three factors we considered were specific growth rate, nutrient(More)
  • Regine Bergholdt, Zenia M Størling, Kasper Lage, E Olof Karlberg, Páll Í Ólason, Mogens Aalund +4 others
  • 2007
We have developed an integrative analysis method combining genetic interactions, identified using type 1 diabetes genome scan data, and a high-confidence human protein interaction network. Resulting networks were ranked by the significance of the enrichment of proteins from interacting regions. We identified a number of new protein network modules and novel(More)
MOTIVATION Pattern identification in biological sequence data is one of the main objectives of bioinformatics research. However, few methods are available for detecting patterns (substructures) in unordered datasets. Data mining algorithms mainly developed outside the realm of bioinformatics have been adapted for that purpose, but typically do not determine(More)
BACKGROUND The hypomethylating agent 5-Azacytidine (5-Aza-CR) is the first drug to prolong overall survival in patients with myelodysplastic syndrome (MDS). Surprisingly, the deoxyribonucleoside analog 5-Aza-2'deoxycytidine (5-Aza-CdR) did not have a similar effect on survival in a large clinical trial. Both drugs are thought to exert their effects after(More)