Christopher T Rodgers

Learn More
The avian magnetic compass has been well characterized in behavioral tests: it is an "inclination compass" based on the inclination of the field lines rather than on the polarity, and its operation requires short-wavelength light. The "radical pair" model suggests that these properties reflect the use of specialized photopigments in the primary process of(More)
Migratory birds travel vast distances each year, finding their way by various means, including a remarkable ability to perceive the Earth's magnetic field. Although it has been known for 40 years that birds possess a magnetic compass, avian magnetoreception is poorly understood at all levels from the primary biophysical detection events, signal transduction(More)
Approximately 50 species, including birds, mammals, reptiles, amphibians, fish, crustaceans and insects, are known to use the Earth's magnetic field for orientation and navigation. Birds in particular have been intensively studied, but the biophysical mechanisms that underlie the avian magnetic compass are still poorly understood. One proposal, based on(More)
The photoinduced electron-transfer reaction of chrysene with isomers of dicyanobenzene is used to demonstrate the sensitivity of a radical recombination reaction to the orientation and frequency (5-50 MHz) of a approximately 300 muT radio frequency magnetic field in the presence of a 0-4 mT static magnetic field. The recombination yield is detected via the(More)
Inter-spin distances between 1 nm and 4.5 nm are measured by continuous wave (CW) and pulsed electron paramagnetic resonance (EPR) methods for a series of nitroxide-spin-labelled peptides. The upper distance limit for measuring dipolar coupling by the broadening of the CW spectrum and the lower distance limit for the present optimally-adjusted double(More)
A critical requirement in the proposed chemical model of the avian magnetic compass is that the molecules that play host to the magnetically sensitive radical pair intermediates must be immobilized and rotationally ordered within receptor cells. Rotational disorder would cause the anisotropic responses of differently oriented radical pairs within the same(More)
At clinical MRI field strengths (1.5 and 3 T), quantitative maps of the longitudinal relaxation time T1 of the myocardium reveal diseased tissue without requiring contrast agents. Cardiac T1 maps can be measured by Look-Locker inversion recovery sequences such as ShMOLLI at 1.5 and 3 T. Cardiovascular MRI at a field strength of 7 T has recently become(More)
Concentric left ventricular (LV) remodeling is associated with adverse cardiovascular events and is frequently observed in patients with type 2 diabetes mellitus (T2DM). Despite this, the cause of concentric remodeling in diabetes per se is unclear, but it may be related to cardiac steatosis and impaired myocardial energetics. Thus, we investigated the(More)
Phosphorus MRSI (31 P-MRSI) using a spiral-trajectory readout at 7 T was developed for high temporal resolution mapping of the mitochondrial capacity of exercising human skeletal muscle. The sensitivity and localization accuracy of the method was investigated in phantoms. In vivo performance was assessed in 12 volunteers, who performed a plantar flexion(More)
Chemical reactions that involve radical intermediates can be influenced by magnetic fields, which act to alter their rate, yield, or product distribution. These effects have been studied extensively in liquids, solids, and constrained media such as micelles. They may be interpreted using the radical pair mechanism (RPM). Such effects are central to the(More)