Christopher T. Green

Learn More
The ability of natural attenuation to mitigate agricultural nitrate contamination in recharging aquifers was investigated in four important agricultural settings in the United States. The study used laboratory analyses, field measurements, and flow and transport modeling for monitoring well transects (0.5 to 2.5 km in length) in the San Joaquin watershed,(More)
The main physical and chemical controls on nitrogen (N) fluxes between the root zone and the water table were determined for agricultural sites in California, Indiana, Maryland, Nebraska, and Washington from 2004 to 2005. Sites included irrigated and nonirrigated fields; soil textures ranging from clay to sand; crops including corn, soybeans, almonds, and(More)
Unsaturated zone N fate and transport were evaluated at four sites to identify the predominant pathways of N cycling: an almond [Prunus dulcis (Mill.) D.A. Webb] orchard and cornfield (Zea mays L.) in the lower Merced River study basin, California; and corn-soybean [Glycine max (L.) Merr.] rotations in study basins at Maple Creek, Nebraska, and at Morgan(More)
Acknowledgements Several individuals made significant contributions to the Summary in addition to the Principal Investigators. We especially wish to thank of UC Santa Barbara for their editorial efforts on several drafts. and California EPA staff. We also appreciate the efforts of University of California Office of the President staff, and the UC staff on(More)
A two-dimensional lattice-Boltzmann model (LBM) with fluid-fluid interactions was used to simulate first-order phase separation in a thin fluid film. The intermediate asymptotic time dependence of the mean island size, island number concentration, and polydispersity were determined and compared with the predictions of the distribution-kinetics model. The(More)
This study evaluates the role of the Peclet number as affected by molecular diffusion in transient anomalous transport, which is one of the major knowledge gaps in anomalous transport, by combining Monte Carlo simulations and stochastic model analysis. Two alluvial settings containing either short- or long-connected hydrofacies are generated and used as(More)
Models need not be complex to be useful. An existing groundwater-flow model of Salt Lake Valley, Utah, was adapted for use with convolution-based advective particle tracking to explain broad spatial trends in dissolved solids. This model supports the hypothesis that water produced from wells is increasingly younger with higher proportions of surface sources(More)
  • 1