Christopher T Gibson

Learn More
The structure of human fibroblasts have been characterised in vitro by atomic force microscopy (AFM) operated in the imaging or in the force versus distance (F-d) modes. The choice of cell substrate is important to ensure good adhesion. Of greater significance in the context of AFM analysis, is the observation that the substrate affects the imaging(More)
Loading of the replicative ring helicase onto the origin of replication (oriC) is the final outcome of a well coordinated series of events that collectively constitute a primosomal cascade. Once the ring helicase is loaded, it recruits the primase and signals the switch to the polymerization mode. The transient nature of the helicase-primase (DnaB-DnaG)(More)
We apply topography and recognition (TREC) imaging to the analysis of whole, untreated human tissue for what we believe to be the first time. Pseudoexfoliation syndrome (PEX), a well-known cause of irreversible blindness worldwide, is characterized by abnormal protein aggregation on the anterior lens capsule of the eye. However, the development of effective(More)
The phase behavior and lateral organization of saturated phosphatidylethanolamine (PE) and phosphatidylcholine (PC) bilayers were investigated using atomic force microscopy (AFM) and force-volume (FV) imaging for both pure and two component mixed layers. The results demonstrated the existence of unexpected segregated domains in pure PE membranes at(More)
We present a comparison of three different methods to calibrate the spring constant of two different types of silicon beam shaped atomic force microscope (AFM) cantilevers to determine each method's accuracy, ease of use and potential destructiveness. The majority of research in calibrating AFM cantilevers has been concerned with contact mode levers. The(More)
Nanoscale surface films are known to develop on surfaces exposed to natural waters and have potential impacts on many environmental processes. A new method using atomic force microscopy is presented which physically removes the developed film in a defined area and then quantifies the difference in height between the film and the area where the film has been(More)
The phenomenon of protein aggregation is of considerable interest to various disciplines, including the field of medicine. A range of disease pathologies are associated with this phenomenon. One of the ocular diseases hallmarked by protein aggregation is the Pseudoexfoliation (PEX) Syndrome. This condition is characterized by the deposition of insoluble(More)
The atomic force microscope (AFM) is widely used in biological sciences due to its ability to perform imaging experiments at high resolution in a physiological environment, without special sample preparation such as fixation or staining. AFM is unique, in that it allows single molecule information of mechanical properties and molecular recognition to be(More)
In atomic force microscopy (AFM) the accuracy of data is often limited by the tip geometry and the effect on this geometry of wear. One way to improve the tip geometry is to attach carbon nanotubes (CNT) to AFM tips. CNTs are ideal because they have a small diameter (typically between 1 and 20nm), high aspect ratio, high strength, good conductivity, and(More)
Atomic force microscopy (AFM) has been used to image and quantify riverine colloids in a quantitative and relatively nonperturbing manner. Three main classes of material have been imaged including fibrils (about 10 nm in diameter and 100 nm or more in length), discrete, near-spherical, small colloids primarily below 30-50 nm in diameter, and a surface film,(More)